精英家教網 > 高中數學 > 題目詳情

(本小題滿分12分)如圖,直角梯形與等腰直角三角形所在的平面互相垂直.,,

(1)求證:;
(2)求直線與平面所成角的正弦值;
(3)線段上是否存在點,使// 平面?若存在,求出;若不存在,說明理由.

(1)證明:見解析;(2)直線與平面所成角的正弦值為
(3)點滿足時,有// 平面

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

(本題滿分12分)
如圖,在四棱錐中,底面為平行四邊形,平面,在棱上.

(I)當時,求證平面
(II)當二面角的大小為時,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
如圖,直三棱柱ABC?A1B1C1中, AC= BC=AA1,D是棱AA1的中點,DC1⊥BD.
(Ⅰ)證明:DC1⊥BC;
(Ⅱ)求二面角A1?BD?C1的大。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分10分)如圖,在直三棱柱中,分別是的中點,點上,.
求證:(1)EF∥平面ABC;
(2)平面平面.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(ii)當滿足條件           ___________時,有.(填所選條件的序號)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,在三棱錐中,側面與側面均為等邊三角形,,中點.
(Ⅰ)證明:平面;
(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(13分)如圖,在邊長為2的菱形中,,的中點.(Ⅰ)求證:平面 ;
(Ⅱ)若,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分14分 )如圖,在三棱柱中,所有的棱長都為2,.
  
(1)求證:
(2)當三棱柱的體積最大時,
求平面與平面所成的銳角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)如圖是正三棱柱ABC-A1B1C1,AA1=3,AB=2,若N為棱AB的中點.
(1)求證:AC1∥平面CNB1;
(2)求四棱錐C-ANB1A1的體積.

查看答案和解析>>

同步練習冊答案