精英家教網 > 高中數學 > 題目詳情

如圖所示,一種醫(yī)用輸液瓶可以視為兩個圓柱的組合體.開始輸液時,滴管內勻速滴下球狀液體,其中球狀液體的半徑毫米,滴管內液體忽略不計.

(1)如果瓶內的藥液恰好分鐘滴完,問每分鐘應滴下多少滴?
(2)在條件(1)下,設輸液開始后(單位:分鐘),瓶內液面與進氣管的距離為(單位:厘米),已知當時,.試將表示為的函數.(注:

(1);(2);

解析試題分析:(1)本小題主要通過題中給出圖形與數據求得瓶內液體的體積(兩個圓柱體的體積和),再計算滴球狀液體的體積,然后利用二者相等,求得;
(2)本小題任然根據滴管內勻速滴下球狀液體體積等于瓶內液體下降的體積,只是需要注意瓶內液體應區(qū)分兩個圓柱體體積的不同,所以所得為分段函數。
試題解析:(1)設每分鐘滴下)滴,      1分
則瓶內液體的體積      3分
滴球狀液體的體積      5分
所以,解得,故每分鐘應滴下滴。      6分
(2)由(1)知,每分鐘滴下藥液      7分
時,,即,此時   10分
時,,即,此時   13分
綜上可得      14分
考點:1.幾何體體積的計算;2.分段函數.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

設函數
(1)若關于x的不等式有實數解,求實數m的取值范圍;
(2)設,若關于x的方程至少有一個解,求p的最小值.
(3)證明不等式:    

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如果函數滿足在集合上的值域仍是集合,則把函數稱為N函數.
例如:就是N函數.
(Ⅰ)判斷下列函數:①,②,③中,哪些是N函數?(只需寫出判斷結果);
(Ⅱ)判斷函數是否為N函數,并證明你的結論;
(Ⅲ)證明:對于任意實數,函數都不是N函數.
(注:“”表示不超過的最大整數)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

經市場調查,某種商品在過去50天的銷售量和價格均為銷售時間t(天)的函數,且銷售量近似地滿足f(t)=-2t+200(1≤t≤50,t∈N).前30天價格為g(t)=t+30(1≤t≤30,t∈N),后20天價格為g(t)=45(31≤t≤50,t∈N).
(1)寫出該種商品的日銷售額S與時間t的函數關系;
(2)求日銷售額S的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

,兩個函數,的圖像關于直線對稱.
(1)求實數滿足的關系式;
(2)當取何值時,函數有且只有一個零點;
(3)當時,在上解不等式

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

對于函數,若存在實數對(),使得等式對定義域中的每一個都成立,則稱函數是“()型函數”.
(Ⅰ)判斷函數是否為 “()型函數”,并說明理由;
(Ⅱ)若函數是“()型函數”,求出滿足條件的一組實數對;,
(Ⅲ)已知函數是“()型函數”,對應的實數對.當時,,若當時,都有,試求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

計算:⑴  ;⑵

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

      

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖是某重點中學學校運動場平面圖,運動場總面積15000平方米,運動場是由一個矩形和分別以為直徑的兩個半圓組成,塑膠跑道寬8米,已知塑膠跑道每平方米造價為150元,其它部分造價每平方米80元,

(Ⅰ)設半圓的半徑(米),寫出塑膠跑道面積的函數關系式
(Ⅱ)由于受運動場兩側看臺限制,的范圍為,問當為何值時,運動場造價最低(第2問取3近似計算).

查看答案和解析>>

同步練習冊答案