精英家教網 > 高中數學 > 題目詳情

【題目】已知點列An(an , bn)(n∈N*)均為函數y=ax(a>0,a≠1)的圖象上,點列Bn(n,0)滿足|AnBn|=|AnBn+1|,若數列{bn}中任意連續(xù)三項能構成三角形的三邊,則a的取值范圍為( )
A.(0, )∪( ,+∞)
B.( ,1)∪(1,
C.(0, )∪( ,+∞)
D.( ,1)∪(1,

【答案】B
【解析】解:由題意得,點Bn(n,0),An(an , bn)滿足|AnBn|=|AnBn+1|,
由中點坐標公式,可得BnBn+1的中點為(n+ ,0),
即an=n+ ,bn= ;
當a>1時,以bn1 , bn , bn+1為邊長能構成一個三角形,
只需bn1+bn+1>bn ,
bn1<bn<bn+1 ,
+ ,
即有1+a2<a,
解得1<a<
同理,0<a<1時,解得 <a<1;
綜上,a的取值范圍是1<a< <a<1,
故選:B.
根據題意,得出an、bn的解析式,討論a>1和0<a<1時,滿足的條件,從而求出a的取值范圍.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=lnx﹣mx+m,m∈R.
(1)已知函數f(x)在點(l,f(1))處與x軸相切,求實數m的值;
(2)求函數f(x)的單調區(qū)間;
(3)在(1)的結論下,對于任意的0<a<b,證明: ﹣1.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數

(1)當時,求的定義域;

(2)若函數的定義域為非空集合,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐 中, , 的中點, 是棱 上的點, , , .

(1)求證:平面 底面
(2)設 ,若二面角 的平面角的大小為 ,試確定 的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(1)求函數的定義域;

(2)判斷函數的奇偶性。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某中學利用周末組織教職員工進行了一次秋季登山健身的活動,有N人參加,現將所有參加者按年齡情況分為[20,25),[25,30),[30,35),[35,40),[40,45),[45,50),[50,55)等七組,其頻率分布直方圖如下所示.已知[35,40)這組的參加者是8人.
(1)求N和[30,35)這組的參加者人數N1
(2)已知[30,35)和[35,40)這兩組各有2名數學教師,現從這兩個組中各選取2人擔任接待工作,設兩組的選擇互不影響,求兩組選出的人中都至少有1名數學老師的概率;
(3)組織者從[45,55)這組的參加者(其中共有4名女教師,其余全為男教師)中隨機選取3名擔任后勤保障工作,其中女教師的人數為x,求x的分布列和均值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為,短軸長為.

(1)求橢圓的方程;

(2)設, 是橢圓上關于軸對稱的任意兩個不同的點,連接交橢圓于另一點,證明直線軸相交于定點;

(3)在(2)的條件下,過點的直線與橢圓交于 兩點,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知定義域為的函數是奇函數.

(1)求的值;

(2)判斷函數的單調性(只寫出結論即可);

(3)若對任意的不等式恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(Ⅰ)求函數的單調區(qū)間

(Ⅱ)若恒成立,求實數取值范圍.

查看答案和解析>>

同步練習冊答案