如圖,在正方體A
1B
1C
1D
1ABCD中,E是C
1D
1的中點,則異面直線DE與AC夾角的余弦值為
試題分析:取
中點
,連接
則
即為異面直線夾角,設邊長為1
由余弦定理的
點評:先將異面直線平移為相交直線找到所求角,再在三角形中求三邊余弦定理求角
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)如圖幾何體,
是矩形,
,
,
為
上的點,且
.
(1)求證:
;
(2)求證:
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
(理)如圖,將∠
B=,邊長為1的菱形
ABCD沿對角線
AC折成大小等于
θ的二面角
B-
AC-
D,若
θ∈[,],
M、
N分別為
AC、
BD的中點,則下面的四種說法:
①
AC⊥
MN;
②
DM與平面
ABC所成的角是
θ;
③線段
MN的最大值是,最小值是;
④當
θ=時,
BC與
AD所成的角等于.
其中正確的說法有
(填上所有正確說法的序號).
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(12分)如圖所示,在三棱柱
中,
點為棱
的中點.
(1)求證:
.
(2)若三棱柱為直三棱柱,且各棱長均為
,求異面直線
與
所成的角的余弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
下列四個命題中,真命題的個數(shù)為( )(1)若兩平面有三個公共點,則這兩個平面重合;(2)兩條直線可以確定一個平面;(3)若
;(4)空間中,相交于同一點的三條直線在同一平面內。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)如圖,四邊形
與
均為菱形,
,且
,
(Ⅰ)求證:
平面
;
(Ⅱ)求證:AE∥平面FCB;
(Ⅲ)求二面角
的余弦值。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
下列命題中,錯誤的命題是( )
A.平行于同一直線的兩個平面平行。 |
B.一條直線與兩個平行平面中的一個相交,那么這條直線必和另一個平面相交。 |
C.平行于同一平面的兩個平面平行。 |
D.一條直線與兩個平行平面所成的角相等。 |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,四面體ABCD中,O、E分別是BD、BC的中點,
(I)求證:
平面BCD;
(II)求異面直線AB與CD所成角的余弦值;
(III)求點E到平面ACD的距離。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
在正方體
中,下列幾種說法正確的是 ( )
查看答案和解析>>