試題分析:(I)因為平面VAD⊥平面ABCD,平面VAD∩平面ABCD=AD,又AB在平面ABCD內(nèi),AD⊥AB,
所以AB⊥平面VAD;(II)法一:先做出所求二面角的平面角,再由余弦定理求平面角的余弦值,既得所求;法二:設(shè)AD的中點為O,連結(jié)VO,則VO⊥底面ABCD,又設(shè)正方形邊長為1,建立空間直角坐標系,寫出各個點的空間坐標,分別求平面VAD的法向量和平面VDB的法向量,可得結(jié)論.
試題解析:(Ⅰ)因為平面VAD⊥平面ABCD,平面VAD∩平面ABCD=AD,又AB在平面ABCD內(nèi),AD⊥AB,
所以AB⊥平面VAD. 3分
(Ⅱ)由(Ⅰ)知AD⊥AB,AB⊥AV.依題意設(shè)AB=AD=AV=1,所以BV=BD=
. 6分
設(shè)VD的中點為E,連結(jié)AE、BE,則AE⊥VD,BE⊥VD,
所以∠AEB是面VDA與面VDB所成二面角的平面角. 9分
又AE=
,BE=
,所以cos∠AEB=
=
.
12分
(方法二)
(Ⅰ)同方法一. 3分
(Ⅱ)設(shè)AD的中點為O,連結(jié)VO,則VO⊥底面ABCD.
又設(shè)正方形邊長為1,建立空間直角坐標系如圖所示. 4分
則,A(
,0,0), B(
,1,0),
D(
,0,0), V(0,0,
);
7分
由(Ⅰ)知
是平面VAD的法向量.設(shè)
是平面VDB的法向量,則
10分
∴
,