【題目】在直角坐標(biāo)系xOy,直線l的參數(shù)方程是 (t為參數(shù)).在以O(shè)為極點,x軸正半軸為極軸建立極坐標(biāo)系中,曲線C:ρ=4sinθ.
(1)當(dāng)m=﹣1,α=30°時,判斷直線l與曲線C的位置關(guān)系;
(2)當(dāng)m=1時,若直線與曲l線C相交于A,B兩點,設(shè)P(1,0),且||PA|﹣|PB||=1,求直線l的傾斜角.

【答案】
(1)解:由ρ=4sinθ,得ρ2=4ρsinθ,又ρ2=x2+y2,x=ρcosθ,y=ρsinθ,

得曲線C的普通方程為(x﹣2)2+y2=4,

所以曲線C是以M(2,0)為圓心,2為半徑的圓,

由直線l的參數(shù)方程為 (t為參數(shù)),

得直線l的直線坐標(biāo)方程為

由圓心M到直線l的距離d= = <2,

故直線l與曲線C相交


(2)解:直線l為經(jīng)過點P(1,0)傾斜角為α的直線,

,代入(x﹣2)2+y2=4,整理得,t2﹣2tcosα﹣3=0,△=(2cosα)2+12>0,

設(shè)A,B對應(yīng)的參數(shù)分別為t1,t2,則t1+t2=2cosα,t1t2=﹣3<0,

所以t1,t2異號.則||PA|﹣|PB||=|t1+t2|=|2cosα|=1,

所以cosα=± ,又α∈[0,π),

所以直線l的傾斜角α=


【解析】(1)由題意利用ρ2=4ρsinθ,ρ2=x2+y2 , 將曲線C化為普通方程,將直線l的參數(shù)t消去為普通方程,圓心M到直線l的距離d與半徑比較可得直線l與曲線C的位置關(guān)系.(2)設(shè)A,B對應(yīng)的參數(shù)分別為t1 , t2 , 利用參數(shù)的幾何意義建立關(guān)系,可得直線l的傾斜角.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】司機(jī)在開機(jī)動車時使用手機(jī)是違法行為,會存在嚴(yán)重的安全隱患,危及自己和他人的生命.為了研究司機(jī)開車時使用手機(jī)的情況,交警部門調(diào)查了100名機(jī)動車司機(jī),得到以下統(tǒng)計:在55名男性司機(jī)中,開車時使用手機(jī)的有40人,開車時不使用手機(jī)的有15人;在45名女性司機(jī)中,開車時使用手機(jī)的有20人,開車時不使用手機(jī)的有25人.
(Ⅰ)完成下面的2×2列聯(lián)表,并判斷是否有99.5%的把握認(rèn)為開車時使用手機(jī)與司機(jī)的性別有關(guān);

開車時使用手機(jī)

開車時不使用手機(jī)

合計

男性司機(jī)人數(shù)

女性司機(jī)人數(shù)

合計

(Ⅱ)以上述的樣本數(shù)據(jù)來估計總體,現(xiàn)交警部門從道路上行駛的大量機(jī)動車中隨機(jī)抽檢3輛,記這3輛車中司機(jī)為男性且開車時使用手機(jī)的車輛數(shù)為X,若每次抽檢的結(jié)果都相互獨立,求X的分布列和數(shù)學(xué)期望E(X).
參考公式與數(shù)據(jù): ,其中n=a+b+c+d.

P(Χ2≥k0

0.150

0.100

0.050

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在下列命題中:①兩個函數(shù)的對應(yīng)法則和值域相同,則這兩個是同一個函數(shù);②上單調(diào)遞增,③若函數(shù)的定義域為,則函數(shù)的定義域為;④若函數(shù)在其定義域內(nèi)不是單調(diào)函數(shù),則不存在反函數(shù);⑤函數(shù)的最小值為4;⑥若關(guān)于的不等式區(qū)間內(nèi)恒成立,則實數(shù)m的范圍是其中真命題的序號有_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知有限集,如果中元素滿足,就稱為“完美集”.

①集合不是“完美集”;

②若、是兩個不同的正數(shù),且是“完美集”,則、至少有一個大于2;

③二元“完美集”有無窮多個;

④若,則“完美集”有且只有一個,且

其中正確的結(jié)論是________(填上你認(rèn)為正確的所有結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , Sn=2an﹣3.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求數(shù)列{nan}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin(3x+3φ)﹣2sin(x+φ)cos(2x+2φ),其中|φ|<π,若f(x)在區(qū)間 上單調(diào)遞減,則φ的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(1)當(dāng)a=1時,判斷f(x)的單調(diào)性;
(2)若f(x)在[0,+∞)上為單調(diào)增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】點P在雙曲線 (a>0,b>0)的右支上,其左、右焦點分別為F1、F2 , 直線PF1與以坐標(biāo)原點O為圓心、a為半徑的圓相切于點A,線段PF1的垂直平分線恰好過點F2 , 則該雙曲線的漸近線的斜率為(
A.±
B.±
C.±
D.±

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在幾何體ABCDEF中,四邊形ABCD是菱形,BE⊥平面ABCD,DF∥BE,且DF=2BE=2,EF=3.
(1)證明:平面ACF⊥平面BEFD
(2)若二面角A﹣EF﹣C是二面角,求直線AE與平面ABCD所成角的正切值.

查看答案和解析>>

同步練習(xí)冊答案