【題目】在四棱錐中,底面,底面為正方形,,點(diǎn)為正方形內(nèi)部的一點(diǎn),且,則直線與所成角的余弦值的取值范圍為( )
A.B.C.D.
【答案】D
【解析】
根據(jù)題意,建立空間直角坐標(biāo)系,在平面上,由計(jì)算的軌跡方程,可知的軌跡是以為圓心,以2為半徑的圓,在正方形中的部分;根據(jù)平行找直線與所成角的平面角,根據(jù)的軌跡判定臨界值,從而確定直線與所成角的余弦值的取值范圍.
由題意,以為坐標(biāo)原點(diǎn),分別以為軸,建立空間直角坐標(biāo)系,如圖所示,則有,
設(shè),由,則列方程有
化簡(jiǎn)得,即點(diǎn)的軌跡是以為圓心,以2為半徑的圓,在正方形中的部分;
過(guò)作垂足為,連接,則有
則直線與所成角的平面角為,
則
根據(jù)點(diǎn)的軌跡是以為圓心,以2為半徑的圓,在正方形中的部分,
則點(diǎn)軌跡與正方形的邊交于一點(diǎn),記為
與正方形的邊交于一點(diǎn),記為
當(dāng)點(diǎn)從運(yùn)動(dòng)到位置時(shí),逐漸減小,逐漸增大,則的取值逐漸減小,
計(jì)算,
則直線與所成角的余弦值的取值范圍是
故選:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲乙兩人報(bào)名參加由某網(wǎng)絡(luò)科技公司舉辦的“技能闖關(guān)”雙人電子競(jìng)技比賽,比賽規(guī)則如下:每一輪“闖關(guān)”結(jié)果都采取計(jì)分制,若在一輪闖關(guān)中,一人過(guò)關(guān)另一人未過(guò)關(guān),過(guò)關(guān)者得1分,未過(guò)關(guān)得分;若兩人都過(guò)關(guān)或都未過(guò)關(guān)則兩人均得0分.甲、乙過(guò)關(guān)的概率分別為和,在一輪闖關(guān)中,甲的得分記為.
(1)求的分布列;
(2)為了增加趣味性,系統(tǒng)給每位報(bào)名者基礎(chǔ)分3分,并且規(guī)定出現(xiàn)一方比另一方多過(guò)關(guān)三輪者獲勝,此二人比賽結(jié)束.表示“甲的累積得分為時(shí),最終認(rèn)為甲獲勝”的概率,則,其中,,,令.證明:點(diǎn)的中點(diǎn)橫坐標(biāo)為;
(3)在第(2)問(wèn)的條件下求,并嘗試解釋游戲規(guī)則的公平性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列是遞減的等差數(shù)列,的前項(xiàng)和是,且,有以下四個(gè)結(jié)論:
①;
②若對(duì)任意都有成立,則的值等于7或8時(shí);
③存在正整數(shù),使;
④存在正整數(shù),使.
其中所有正確結(jié)論的序號(hào)是
A. ①②B. ①②③
C. ②③④D. ①②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)().
(1)當(dāng)時(shí),求函數(shù)的最小值;
(2)若時(shí),,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,P是曲線上的動(dòng)點(diǎn),M為線段OP的中點(diǎn),設(shè)點(diǎn)M的軌跡為曲線.
(1)求的極坐標(biāo)方程;
(2)若射線與曲線異于極點(diǎn)的交點(diǎn)為A,與曲線異于極點(diǎn)的交點(diǎn)為B,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)ae2x+(a﹣2) ex﹣x.
(1)討論的單調(diào)性;
(2)若有兩個(gè)零點(diǎn),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),為的導(dǎo)數(shù).
(Ⅰ)求曲線在點(diǎn)處的切線方程;
(Ⅱ)證明:在區(qū)間上存在唯一零點(diǎn);
(Ⅲ)設(shè),若對(duì)任意,均存在,使得,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中,為自然對(duì)數(shù)的底數(shù).
(1)當(dāng)時(shí),證明:對(duì);
(2)若函數(shù)在上存在極值,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐的底面是菱形,底面,分別是的中點(diǎn),,,.
(I)證明:;
(II)求直線與平面所成角的正弦值;
(III)在邊上是否存在點(diǎn),使與所成角的余弦值為,若存在,確定點(diǎn)位置;若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com