已知函數(shù)f(x)是二次函數(shù),不等式f(x)>0的解集是(0,4),且f(x)在區(qū)間[-1,5]上的最大值是12,則f(x)的解析式為 .
【答案】分析:由已知函數(shù)f(x)是二次函數(shù),不等式f(x)>0的解集是(0,4),可得到函數(shù)圖象開口向下,且x=0,與x=4是其兩個零點,由f(x)在區(qū)間[-1,5]上的最大值是12,知函數(shù)的頂點坐標是(2,12),故可用待定系數(shù)法設(shè)出它的頂點式方程,再代入相應點求參數(shù).
解答:解:∵函數(shù)f(x)是二次函數(shù),不等式f(x)>0的解集是(0,4),且f(x)在區(qū)間[-1,5]上的最大值是12,
∴二次函數(shù)圖象開口向下,且其頂點坐標是(2,12),且x=0,與x=4是其兩個零點,
故可設(shè)f(x)=a(x-2)2+12
將點(0,0) 代入得0=4a+12,解得a=-3
故函數(shù)f(x))=-3(x-2)2+12
故答案為f(x))=-3(x-2)2+12.
點評:本題考點是函數(shù)的最值及其幾何意義,考查用根據(jù)最值與函數(shù)的相關(guān)特征是待定系數(shù)法設(shè)出函數(shù)解析式,再根據(jù)已知條件求參數(shù),二次函數(shù)的解析式的設(shè)法有三種,依次為頂點式,兩根式,一般式,本題采用了頂點式.