【題目】某車間有50名工人,要完成150件產(chǎn)品的生產(chǎn)任務,每件產(chǎn)品由3型零件和1型零件配套組成,每個工人每小時能加工5型零件或者3型零件,現(xiàn)在把這些工人分成兩組同時工作(分組后人數(shù)不再進行調(diào)整),每組加工同一種型號的零件.設加工型零件的工人數(shù)為.

(1)設完成型零件加工所需的時間分別為小時,寫出的解析式;

(2)當取何值時,完成全部生產(chǎn)任務的時間最短?

【答案】(1),且);,且);(2)為了在最短時間內(nèi)完成生產(chǎn)任務,應取32.

【解析】

(1)分別計算得到,再計算定義域得到答案.

(2)根據(jù)的大小關(guān)系得到,分別計算函數(shù)的最小值得到答案.

1)生產(chǎn)150件產(chǎn)品,需加工型零件450個,

則完成型零件加工所需時間,且.

生產(chǎn)150件產(chǎn)品,需加工型零件150個,

則完成型零件加工所需時間,且.

2)設完成全部生產(chǎn)任務所需時間為小時,則的較大者.

,即,解得.

所以,當時,;當時,.

.

時,,故上單調(diào)遞減,

上的最小值為(小時);

時,,故上單調(diào)遞增,

上的最小值為(小時);

,∴上的最小值為.

.

為了在最短時間內(nèi)完成生產(chǎn)任務,應取32.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】,函數(shù)

1)當時,求函數(shù)的單調(diào)區(qū)間;

2)若函數(shù)在區(qū)間上有唯一零點,試求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),下述四個結(jié)論:

是偶函數(shù);

的最小正周期為;

的最小值為0;

上有3個零點

其中所有正確結(jié)論的編號是(

A.①②B.①②③C.①③④D.②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】四棱錐中,,底面為菱形,且有,,中點.

(1)證明:

(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,圓的參數(shù)方程為參數(shù)).以為極點,軸的非負半軸為極軸建立極坐標系.

1)求圓的極坐標方程;

2)直線的極坐標方程是,射線與圓的交點為,與直線的交點為,求線段的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線C=2px經(jīng)過點(1,2).過點Q(0,1)的直線l與拋物線C有兩個不同的交點A,B,且直線PAy軸于M,直線PBy軸于N

求直線l的斜率的取值范圍

O為原點,,求證為定值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】屆冬奧會將于年在中國北京和張家口舉行,為宣傳冬奧會,讓更多的人了解、喜愛冰雪項目,某大學舉辦了冬奧會知識競賽,并從中隨機抽取了名學生的成績,繪制成如圖所示的頻率分布直方圖.

(Ⅰ)試根據(jù)頻率分布直方圖估計這名學生的平均成績(同一組數(shù)據(jù)用該組區(qū)間的中點值代替);

(Ⅱ)若采用分層抽樣的方法從、這兩個分數(shù)段中抽取人,求從這兩個分數(shù)段中應分別抽取多少人?

(Ⅲ)從(Ⅱ)中抽取的人中隨機抽取人到某社區(qū)開展冬奧會宜傳活動,求抽取的人成績均在中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在多面體中,,,,且平面平面.

(1)設點為線段的中點,試證明平面;

(2)若直線與平面所成的角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4—4:坐標系與參數(shù)方程]

在直角坐標系中,曲線的方程為.以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為

1)求的直角坐標方程;

2)若有且僅有三個公共點,求的方程.

查看答案和解析>>

同步練習冊答案