1.已知A(3,1),B(-4,0),P是橢圓$\frac{x^2}{25}+\frac{y^2}{9}=1$上的一點(diǎn),則PA+PB的最大值為$10+\sqrt{2}$.

分析 由題意畫出圖形,可知B為橢圓的左焦點(diǎn),A在橢圓內(nèi)部,設(shè)橢圓右焦點(diǎn)為F,借助于橢圓定義,把|PA|+|PB|的最大值轉(zhuǎn)化為橢圓上的點(diǎn)到A的距離與F距離差的最大值求解.

解答 解:由橢圓方程,得a2=25,b2=9,則c2=16,
∴B(-4,0)是橢圓的左焦點(diǎn),A(3,1)在橢圓內(nèi)部,
如圖:設(shè)橢圓右焦點(diǎn)為F,由題意定義可得:|PB|+|PF|=2a=10,
則|PB|=10-|PF|,
∴|PA|+|PB|=10+(|PA|-|PF|).
連接AF并延長,交橢圓與P,則此時(shí)|PA|-|PF|有最大值為|AF|=$\sqrt{2}$
∴|PA|+|PB|的最大值為10+$\sqrt{2}$.
故答案為:10+$\sqrt{2}$

點(diǎn)評 本題考查橢圓的簡單性質(zhì),考查了數(shù)形結(jié)合的解題思想方法和數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列函數(shù)在區(qū)間(0,+∞)上為減函數(shù)的是( 。
A.y=-|x-1|B.y=x2-2x+4C.y=ln(x+2)D.y=($\frac{1}{2}$)x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.如圖所示,已知三棱柱ABC-A1B1C1的所有棱長都相等,AA1⊥平面ABC,D是A1C1的中點(diǎn),則直線AD與平面B1DC所成的角θ的正弦值為$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在四棱錐P-ABCD中,PA⊥面ABCD,AB=BC,AD=CD,AC交BD于點(diǎn)O,G為線段PC上一點(diǎn).
(1)證明:BD⊥平面PAC;
(2)若G是PC的中點(diǎn),探討直線PA與平面BDG公共點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=cosx+$\sqrt{3}$sinx,則$f'(\frac{π}{3})$的值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知二次函數(shù)h(x)=ax2+bx+c(c<4),其導(dǎo)函數(shù)y=h'(x)的圖象如圖所示,函數(shù)f(x)=8lnx+h(x).
(1)求a,b的值; 
(2)若函數(shù)f(x)在區(qū)間(m,m+$\frac{1}{2}$)上是單調(diào)增函數(shù),求實(shí)數(shù)m的取值范圍;
(3)若對任意k∈[-1,1],x∈(0,8],不等式(k+1)x≥f(x)恒成立,求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(x+1)^{2},x≤0}\\{|lo{g}_{2}x|,x>0}\end{array}\right.$,若方程f(x)=a有四個(gè)不同的解x1,x2,x3,x4,且x1<x2<x3<x4,則x1+x2+$\frac{1}{{x}_{3}{x}_{4}}$的值為(  )
A.0B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知圓C:(x-3)2+(y-4)2=1,點(diǎn)A(0,-1),B(0,1),設(shè)P是圓C上的動(dòng)點(diǎn),令d=|PA|2+|PB|2,則d的取值范圍是[32,72].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)y=3cos(x+φ)-1的圖象關(guān)于直線x=$\frac{π}{3}$對稱,其中φ∈[0,π],則φ的值為$\frac{2π}{3}$.

查看答案和解析>>

同步練習(xí)冊答案