【題目】某企業(yè)為確定下一年度投入某種產(chǎn)品的生產(chǎn)所需的資金,需了解每投入2千萬資金后,工人人數(shù)(單位:百人)對年產(chǎn)能(單位:千萬元)的影響,對投入的人力和年產(chǎn)能的數(shù)據(jù)作了初步處理,得到散點(diǎn)圖和統(tǒng)計(jì)量表.
(1)根據(jù)散點(diǎn)圖判斷:與哪一個適宜作為年產(chǎn)能關(guān)于投入的人力的回歸方程類型?并說明理由?
(2)根據(jù)(1)的判斷結(jié)果及相關(guān)的計(jì)算數(shù)據(jù),建立關(guān)于的回歸方程;
(3)現(xiàn)該企業(yè)共有2000名生產(chǎn)工人,資金非常充足,為了使得年產(chǎn)能達(dá)到最大值,則下一年度共需投入多少資金(單位:千萬元)?
附注:對于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為,(說明:的導(dǎo)函數(shù)為)
【答案】(1)選擇,理由見解析;(2);(3)20千萬
【解析】
(1)由圖可知適宜作為年產(chǎn)能關(guān)于投入的人力的回歸方程類型;
(2)由,得,再利用最小二乘法求出,從而得到關(guān)于的回歸方程;
(3)利用導(dǎo)數(shù)求得當(dāng)時,取得最大值.
(1)由圖可知適宜作為年產(chǎn)能關(guān)于投入的人力的回歸方程類型
若選擇,則,此時當(dāng)接近于0時,必小于0,
故選擇作為年產(chǎn)能關(guān)于投入的人力的回歸方程類型
(2)由,得,故與符合線性回歸,.
,
,即,
關(guān)于的回歸方程.
(3)當(dāng)人均產(chǎn)能達(dá)到最大時,年產(chǎn)能也達(dá)到最大,
由(2)可知人均產(chǎn)能函數(shù),
,
時,,時,
時,單調(diào)遞增,時,單調(diào)遞減,
當(dāng)時,人均產(chǎn)能函數(shù)達(dá)到最大值,
因此,每2千萬資金安排2百人進(jìn)行生產(chǎn),能使人均產(chǎn)能達(dá)到最大,
對于該企業(yè)共有2000名生產(chǎn)工人,且資金充足,
下一年度應(yīng)該投入20千萬資金進(jìn)行生產(chǎn),可以適當(dāng)企業(yè)的產(chǎn)能達(dá)到最大.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3(a>0且a≠1).
(1)求函數(shù)f(x)的定義域;
(2)討論函數(shù)f(x)的奇偶性;
(3)求a的取值范圍,使f(x)>0在定義域上恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知公差不為零的等差數(shù)列中,,且,,成等比數(shù)列,
(1)求數(shù)列的通項(xiàng)公式;
(2)數(shù)列滿足,數(shù)列的前n項(xiàng)和為,若不等式對一切恒成立,求的取值范圍.
(3)設(shè)數(shù)列的前n項(xiàng)和為,求證:對任意正整數(shù)n,都有成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】由中央電視臺綜合頻道()和唯眾傳媒聯(lián)合制作的《開講啦》是中國首檔青年電視公開課.每期節(jié)目由一位知名人士講述自己的故事,分享他們對于生活和生命的感悟,給予中國青年現(xiàn)實(shí)的討論和心靈的滋養(yǎng),討論青年們的人生問題,同時也在討論青春中國的社會問題,受到青年觀眾的喜愛,為了了解觀眾對節(jié)目的喜愛程度,電視臺隨機(jī)調(diào)查了、兩個地區(qū)的100名觀眾,得到如下的列聯(lián)表,已知在被調(diào)查的100名觀眾中隨機(jī)抽取1名,該觀眾是地區(qū)當(dāng)中“非常滿意”的觀眾的概率為0.35.
非常滿意 | 滿意 | 合計(jì) | |
30 | 15 | ||
合計(jì) |
(1)現(xiàn)從100名觀眾中用分層抽樣的方法抽取20名進(jìn)行問卷調(diào)查,則應(yīng)抽取“非常滿意”的、地區(qū)的人數(shù)各是多少.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
(2)完成上述表格,并根據(jù)表格判斷是否有的把握認(rèn)為觀眾的滿意程度與所在地區(qū)有關(guān)系.
(3)若以抽樣調(diào)查的頻率為概率,從地區(qū)隨機(jī)抽取3人,設(shè)抽到的觀眾“非常滿意”的人數(shù)為,求的分布列和期望.
附:參考公式:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為ρ2﹣6ρcosθ+5=0,曲線C2的參數(shù)方程為(t為參數(shù)).
(1)求曲線C1的直角坐標(biāo)方程,并說明是什么曲線?
(2)若曲線C1與C2相交于A、B兩點(diǎn),求|AB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個小商店從一家食品有限公司購進(jìn)10袋白糖,每袋白糖的標(biāo)準(zhǔn)重量是500g,為了了解這些白糖的實(shí)際重量,稱量出各袋白糖的實(shí)際重量(單位:g)如下:503,502,496,499,491,498,506,504,501,510
(1)求這10袋白糖的平均重量和標(biāo)準(zhǔn)差s;
(2)從這10袋中任取2袋白糖,那么其中恰有一袋的重量不在(s,s)的概率是多少?(附:5.08,16.06,5.09,16.09)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】古希臘雅典學(xué)派算學(xué)家歐道克薩斯提出了“黃金分割”的理論,利用尺規(guī)作圖可畫出己知線段的黃金分割點(diǎn),具體方法如下:(l)取線段AB=2,過點(diǎn)B作AB的垂線,并用圓規(guī)在垂線上截取BC=AB,連接AC;(2)以C為圓心,BC為半徑畫弧,交AC于點(diǎn)D;(3)以A為圓心,以AD為半徑畫弧,交AB于點(diǎn)E.則點(diǎn)E即為線段AB的黃金分割點(diǎn).若在線段AB上隨機(jī)取一點(diǎn)F,則使得BE≤AF≤AE的概率約為( 。▍⒖紨(shù)據(jù):2.236)
A. 0.236B. 0.382C. 0.472D. 0.618
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,,,為的中點(diǎn).
(1)證明:平面;
(2)若點(diǎn)在棱上,且,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著醫(yī)院對看病掛號的改革,網(wǎng)上預(yù)約成為了當(dāng)前最熱門的就診方式,這解決了看病期間病人插隊(duì)以及醫(yī)生先治療熟悉病人等諸多問題;某醫(yī)院研究人員對其所在地區(qū)年齡在10~60歲間的位市民對網(wǎng)上預(yù)約掛號的了解情況作出調(diào)查,并將被調(diào)查的人員的年齡情況繪制成頻率分布直方圖,如下圖所示.
(Ⅰ)若被調(diào)查的人員年齡在20~30歲間的市民有300人,求被調(diào)查人員的年齡在40歲以上(含40歲)的市民人數(shù);
(Ⅱ)若按分層抽樣的方法從年齡在以內(nèi)及以內(nèi)的市民中隨機(jī)抽取5人,再從這5人中隨機(jī)抽取2人進(jìn)行調(diào)研,求抽取的2人中,至多1人年齡在內(nèi)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com