【題目】甲、乙兩名跳高運動員一次試跳2米高度成功的概率分別為0、7、0、6,且每次試跳成功與否相互之間沒有影響,求:
(1)甲試跳三次,第三次才能成功的概率;
(2)甲、乙兩人在第一次試跳中至少有一人成功的概率;
(3)甲、乙各試跳兩次,甲比乙的成功次數恰好多一次的概率.
【答案】
(1)解:記“甲第i次試跳成功”為事件A1,“乙第i次試跳成功”為事件B1、
依題意得P(A1)=0.7,P(B1)=0.6,且A1,B1(i=1,2,3)相互獨立、
“甲第三次試跳才成功”為事件 A3,且三次試跳相互獨立,
∴P( A3)=P( )P =0.3×0.3×0.7=0.063
即甲第三次試跳才成功的概率為0.063.
(2)解:甲、乙兩支在第一次試跳中至少有一人成功為事件C,
解法一:C=A1 彼此互斥,
∴P(C)=
=
=0.7×0.4+0.3×0.6+0.7×0.6
=0.88
解法二:P(C)=1﹣ =1﹣0.3×0.4=0.88.
即甲、乙兩人在第一次試跳中至少有一人成功的概率為0.88
(3)解:設“甲在兩次試跳中成功i次”為事件Mi(i=0,1,2),
“乙在兩次試跳中成功i次”為事件Ni(i=0,1,2),
∵事件“甲、乙各試跳兩次,甲比乙的成功次數恰好多一次”可表示為M1N0+M2N1,且M1N0、M2N1為互斥事件.
∴所求的概率為P(M1N0+M2N1)=P(M1N0)+P(M2N1)=P(M1)P(N0)+P(M2)P(N1)
=C21×0.7×0.3×0.42+0.72×C21×0.6×0.4
=0.0672+0.2352
=0.3024.
即甲、乙每人試跳兩次,甲比乙的成功次數恰好多一次的概率為0.3024
【解析】(1)由題意知本題是一個相互獨立事件,甲試跳三次,第三次才能成功的概率,表示甲前兩次試跳不成功,而第三次試跳才成功,記出事件,根據相互獨立事件同時發(fā)生的概率,得到結果.(2)甲、乙兩人在第一次試跳中至少有一人成功表示甲成功且乙成功,甲不成功且乙成功,甲成功且乙不成功,三種結果,這三種事件之間是互斥關系,根據互斥事件和相互獨立事件的概率,得到結果.(3)甲、乙各試跳兩次,甲比乙的成功次數恰好多一次表示甲成功兩次且乙成功一次,甲成功一次且乙成功0次,兩種結果,這兩種結果是互斥的,根據互斥事件的概率,得到結果.
科目:高中數學 來源: 題型:
【題目】從0,1,2,3,4這五個數中任選三個不同的數組成一個三位數,記X為所組成的三位數各位數字之和.
(1)求X是奇數的概率;
(2)求X的概率分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某科技公司生產一種手機加密芯片,其質量按測試指標劃分為:指標大于或等于為合格品,小于為次品.現隨機抽取這種芯片共件進行檢測,檢測結果統(tǒng)計如表:
測試指標 | |||||
芯片數量(件) |
已知生產一件芯片,若是合格品可盈利元,若是次品則虧損元.
(Ⅰ)試估計生產一件芯片為合格品的概率;并求生產件芯片所獲得的利潤不少于元的概率.
(Ⅱ)記為生產件芯片所得的總利潤,求隨機變量的分布列和數學期望
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】廣播電臺為了了解某地區(qū)的聽眾對某個戲曲節(jié)目的收聽情況,隨機抽取了100名聽眾進行調查,下面是根據調查結果繪制的聽眾日均收聽該節(jié)目的頻率分布直方圖,將日均收聽該節(jié)目時間不低于40分鐘的聽眾成為“戲迷”
(1)根據已知條件完成2×2列聯表,并判斷“戲迷”與性別是否有關?
“戲迷” | 非戲迷 | 總計 | |
男 | |||
女 | 10 | 55 | |
總計 |
附:K2= ,
P(K2≥k) | 0.05 | 0.01 |
k | 3.841 | 6.635 |
(2)將上述調查所得到的頻率當作概率.現在從該地區(qū)大量的聽眾中,采用隨機抽樣的方法每次抽取1名聽眾,抽取3次,記被抽取的3名聽眾中“戲迷”的人數為X,若每次抽取的結果相互獨立,求X的分布列,數學期望及方差.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某商品在近30天內每件的銷售價格P(元)與時間t(天)的函數是:P=
該商品的日銷售量Q(件)與時間t(天)的函數關系是:Q=﹣t+40(0<t≤30,t∈N*),求這種商品的日銷售金額的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】共享單車是指企業(yè)在校園、地鐵站點、公交站點、居民區(qū)、商業(yè)區(qū)、公共服務區(qū)等提供自行車單車共享服務,是共享經濟的一種新形態(tài).一個共享單車企業(yè)在某個城市就“一天中一輛單車的平均成本(單位:元)與租用單車的數量(單位:千輛)之間的關系”進行調查研究,在調查過程中進行了統(tǒng)計,得出相關數據見下表:
租用單車數量(千輛) | 2 | 3 | 4 | 5 | 8 |
每天一輛車平均成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 |
根據以上數據,研究人員分別借助甲、乙兩種不同的回歸模型,得到兩個回歸方程,方程甲: ,方程乙: .
(1)為了評價兩種模型的擬合效果,完成以下任務:
①完成下表(計算結果精確到0.1)(備注: ,稱為相應于點的殘差(也叫隨機誤差));
租用單車數量 (千輛) | 2 | 3 | 4 | 5 | 8 | |
每天一輛車平均成本 (元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 | |
模型甲 | 估計值 | 2.4 | 2.1 | 1.6 | ||
殘差 | 0 | -0.1 | 0.1 | |||
模型乙 | 估計值 | 2.3 | 2 | 1.9 | ||
殘差 | 0.1 | 0 | 0 |
②分別計算模型甲與模型乙的殘差平方和及,并通過比較的大小,判斷哪個模型擬合效果更好.
(2)這個公司在該城市投放共享單車后,受到廣大市民的熱烈歡迎,共享單車常常供不應求,于是該公司研究是否增加投放.根據市場調查,這個城市投放8千輛時,該公司平均一輛單車一天能收入10元,6元收入的概率分別為0.6,0.4;投放1萬輛時,該公司平均一輛單車一天能收入10元,6元收入的概率分別為0.4,0.6.問該公司應該投放8千輛還是1萬輛能獲得更多利潤?(按(1)中擬合效果較好的模型計算一天中一輛單車的平均成本,利潤=收入-成本).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com