如圖所示,AB是⊙O的直徑,PA⊥平面⊙O,C為圓周上一點(diǎn),AB=5cm,AC=2cm,則B到平面PAC的距離為
21
cm
21
cm
分析:證明平面PAC⊥平面⊙O,BC⊥平面PAC,則BC為B到平面PAC的距離,利用勾股定理即可求解.
解答:解:∵PA⊥平面⊙O,PA?平面PAC,
∴平面PAC⊥平面⊙O,
∵AB是⊙O的直徑,C為圓周上一點(diǎn),
∴BC⊥AC
∵平面PAC⊥平面⊙O=AC
∴BC⊥平面PAC
∴BC為B到平面PAC的距離
直角△ABC中,BC⊥AC,AB=5cm,AC=2cm,∴BC=
21
cm
故答案為:
21
cm
點(diǎn)評(píng):本題考查面面垂直,線面垂直,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,AB是⊙O直徑,OD⊥弦BC于點(diǎn)F,且交⊙O于點(diǎn)E,若∠AEC=∠ODB.
(1)判斷直線BD和⊙O的位置關(guān)系,并給出證明;
(2)當(dāng)AB=10,BC=8時(shí),求BD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,AB是⊙O的直徑,點(diǎn)C是⊙O圓周上不同于A、B的任意一點(diǎn),PA⊥平面ABC,點(diǎn)E是線段PB的中點(diǎn),點(diǎn)M在
AB
上,且MO∥AC.
(1)求證:BC⊥平面PAC;
(2)求證:平面EOM∥平面PAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•東莞二模)(幾何證明選講選做題)
如圖所示,AB是⊙O的直徑,過圓上一點(diǎn)E作切線ED⊥AF,交AF的延長(zhǎng)線于點(diǎn)D,交AB的延長(zhǎng)線于點(diǎn)C.若CB=2,CE=4,則AD的長(zhǎng)為
24
5
24
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•揭陽一模)如圖所示,AB是⊙O的直徑,過圓上一點(diǎn)E作切線ED⊥AF,交AF的延長(zhǎng)線于點(diǎn)D,交AB的延長(zhǎng)線于點(diǎn)C.若CB=2,CE=4,則⊙O 的半徑長(zhǎng)為
3
3
;AD的長(zhǎng)為
24
5
24
5

查看答案和解析>>

同步練習(xí)冊(cè)答案