(2013•東莞二模)(幾何證明選講選做題)
如圖所示,AB是⊙O的直徑,過(guò)圓上一點(diǎn)E作切線(xiàn)ED⊥AF,交AF的延長(zhǎng)線(xiàn)于點(diǎn)D,交AB的延長(zhǎng)線(xiàn)于點(diǎn)C.若CB=2,CE=4,則AD的長(zhǎng)為
24
5
24
5
分析:設(shè)出圓的半徑直接利用切割線(xiàn)定理求出圓的半徑,通過(guò)三角形相似列出比例關(guān)系求出AD即可.
解答:解:設(shè)r是⊙O的半徑.由切割線(xiàn)定理可知:CE2=CA•CB,
即42=(2r+2)×2,解得r=3.
因?yàn)镋C是圓的切線(xiàn),所以O(shè)E⊥EC,AD⊥DC,
所以△ADC∽△OEC,所以
CO
CA
=
OE
AD
5
8
=
3
AD
,
解得AD=
24
5

故答案為:
24
5
點(diǎn)評(píng):本題考查圓的切割線(xiàn)定理的應(yīng)用,三角形相似的證明以及應(yīng)用,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•東莞二模)設(shè)Sn為數(shù)列{an}前n項(xiàng)和,對(duì)任意的n∈N*,都有Sn=2-an,數(shù)列{bn}滿(mǎn)足bn=
bn-1
1+bn-1
,b1=2a1,
(1)求證:數(shù)列{an}是等比數(shù)列,并求{an}的通項(xiàng)公式;
(2)求數(shù)列{bn}的通項(xiàng)公式;
(3)求數(shù)列{
1
an+2bn
}
的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•東莞二模)命題“?x∈R,x2+1≥1”的否定是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•東莞二模)如圖,在三棱柱ABC-A1B1C1中,側(cè)棱AA1⊥底面ABC,AB⊥BC,D為AC的中點(diǎn),AA1=AB=2.
(1)求證:AB1∥平面BC1D;
(2)若BC=3,求三棱錐D-BC1C的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•東莞二模)已知x>0,y>0,且
1
x
+
9
y
=1
,則2x+3y的最小值為
29+6
6
29+6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•東莞二模)已知函數(shù)f(x)=tan(
1
3
x-
π
6
)

(1)求f(x)的最小正周期;
(2)求f(
2
)
的值;
(3)設(shè)f(3α+
2
)=-
1
2
,求
sin(π-α)+cos(α-π)
2
sin(α+
π
4
)
的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案