【題目】已知函數(shù).
(I)討論函數(shù)的單調(diào)性,并證明當(dāng)時(shí), ;
(Ⅱ)證明:當(dāng)時(shí),函數(shù)有最小值,設(shè)最小值為,求函數(shù)的值域.
【答案】(1)見(jiàn)解析(2)
【解析】試題分析:(1)先求函數(shù)導(dǎo)數(shù),確定導(dǎo)函數(shù)在定義區(qū)間上恒非負(fù),故得函數(shù)單調(diào)區(qū)間;根據(jù)函數(shù)單調(diào)遞增得,即得不等式,(2)利用(1)結(jié)論可得函數(shù)的導(dǎo)數(shù)在區(qū)間內(nèi)單調(diào)遞增,根據(jù)零點(diǎn)存在定理可得有一唯一零點(diǎn)且.從而可得在處取最小值,利用化簡(jiǎn),得.最后再利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,即得函數(shù)的值域.
試題解析:(1)由得
故在上單調(diào)遞增,
當(dāng)時(shí),由上知,
即,即,得證.
(2)對(duì)求導(dǎo),得, .
記, .
由(Ⅰ)知,函數(shù)區(qū)間內(nèi)單調(diào)遞增,
又, ,所以存在唯一正實(shí)數(shù),使得.
于是,當(dāng)時(shí), , ,函數(shù)在區(qū)間內(nèi)單調(diào)遞減;
當(dāng)時(shí), , ,函數(shù)在區(qū)間內(nèi)單調(diào)遞增.
所以在內(nèi)有最小值,
由題設(shè)即.
又因?yàn)?/span>.所以.
根據(jù)(Ⅰ)知, 在內(nèi)單調(diào)遞增, ,所以.
令,則,函數(shù)在區(qū)間內(nèi)單調(diào)遞增,
所以,
即函數(shù)的值域?yàn)?/span>.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)若過(guò)點(diǎn)恰有兩條直線與曲線相切,求的值;
(Ⅱ)用表示中的最小值,設(shè)函數(shù),若恰有三個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若圓經(jīng)過(guò)點(diǎn)(2,0),(0,4),(0,2)求:
(1)圓的方程
(2)圓的圓心和半徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司生產(chǎn)甲、乙兩種桶裝產(chǎn)品.已知生產(chǎn)甲產(chǎn)品1桶需耗原料1千克、原料2千克;生產(chǎn)乙產(chǎn)品1桶需耗原料2千克, 原料1千克.每桶甲產(chǎn)品的利潤(rùn)是300元,每桶乙產(chǎn)品的利潤(rùn)是400元.公司在生產(chǎn)這兩種產(chǎn)品的計(jì)劃中,要求每天消耗原料都不超過(guò)12千克.通過(guò)合理安排生產(chǎn)計(jì)劃,從每天生產(chǎn)的甲、乙兩種產(chǎn)品中,公司共可獲得的最大利潤(rùn)是__________元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: 的左頂點(diǎn)為,右焦點(diǎn)為,過(guò)點(diǎn)且斜率為1的直線交橢圓于另一點(diǎn),交軸于點(diǎn), .
(1)求橢圓的方程;
(2)過(guò)點(diǎn)作直線與橢圓交于兩點(diǎn),連接(為坐標(biāo)原點(diǎn))并延長(zhǎng)交橢圓于點(diǎn),求面積的最大值及取最大值時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù);
(2)設(shè)函數(shù),其中a∈(1,2),求函數(shù)g(x)在區(qū)間[1,e]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,且, ,在數(shù)列中, , , .
(1)求證: 是等比數(shù)列;
(2)若,求數(shù)列的前項(xiàng)和;
(3)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的中心在原點(diǎn),離心率等于,它的一個(gè)短軸端點(diǎn)恰好是拋物線的焦點(diǎn)
(1)求橢圓的方程;
(2)已知、是橢圓上的兩點(diǎn), , 是橢圓上位于直線兩側(cè)的動(dòng)點(diǎn).①若直線的斜率為,求四邊形面積的最大值;
②當(dāng), 運(yùn)動(dòng)時(shí),滿足,試問(wèn)直線的斜率是否為定值,請(qǐng)說(shuō)明理由
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com