【題目】在四棱錐中, 平面 , ,且 為線段上一點.

(1)求證:平面平面;

(2)若,求證: 平面,并求四棱錐的體積.

【答案】(1)見解析(2)5

【解析】試題分析:(1)證明面面垂直可證線面垂直,因為平面 平面,所以,又,且,所以平面.(2)在上取一點,使得,因為,所以.又,所以,所以四邊形為平行四邊形,因為平面,所以.因為, ,即點的距離為,再根據(jù)椎體體積公式求解即可

試題解析:

證明:(1)因為平面, 平面

所以,又,且,所以平面.

因為平面,所以平面平面.

(2)在上取一點,使得,

因為,所以.

,所以,

所以四邊形為平行四邊形,

所以,又平面, 平面

所以平面.

因為平面,所以.因為 ,即點的距離為,

即得點到平面的距離為2,

,所以點到平面的距離為

所以 .

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)是定義在R上的偶函數(shù),且x≤0時,f(x)= (1﹣x).
(1)求f(0),f(1);
(2)求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司2016年前三個月的利潤(單位:百萬元)如下:

月份

1

2

3

利潤

2

3.9

5.5

(1)求利潤關于月份的線性回歸方程;

(2)試用(1)中求得的回歸方程預測4月和5月的利潤;

(3)試用(1)中求得的回歸方程預測該公司2016年從幾月份開始利潤超過1000萬?

相關公式:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,則稱點為平面上單調(diào)格點:設

求從區(qū)域中任取一點,而該點落在區(qū)域上的概率;

求從區(qū)域中的所有格點中任取一點,而該點是區(qū)域上的格點的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列是公比為的等比數(shù)列,且的等比中項,其前項和為;數(shù)列是等差數(shù)列, ,其前項和滿足 (為常數(shù),且)

1)求數(shù)列的通項公式及的值;

2)求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】寶寶的健康成長是媽媽們最關心的問題,父母親為嬰兒選擇什么品牌的奶粉一直以來都是育嬰中的一個重要話題,為了解過程奶粉的知名度和消費者的信任度,某調(diào)查小組特別調(diào)查記錄了某大型連鎖超市2015年與2016年這兩年銷售量前5名的五個品牌奶粉的銷量(單位:罐),繪制如下的管狀圖:

(1)根據(jù)給出的這兩年銷量的管狀圖,對該超市這兩年品牌奶粉銷量的前五強進行排名;

(2)分別計算這5個品牌奶粉2016年所占總銷量(僅指這5個品牌奶粉的總銷量)的百分比(百分數(shù)精確到各位),并將數(shù)據(jù)填入如下餅狀圖中的括號內(nèi);

(3)已知該超市2014年飛鶴奶粉的銷量為(單位:罐),試以這3年的銷量得出銷量關于年份的線性回歸方程,并據(jù)此預測2017年該超市飛鶴奶粉的銷量.

相關公式: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知經(jīng)過原點的直線與橢圓交于兩點,點為橢圓上不同于的一點,直線的斜率均存在,且直線的斜率之積為.

(1)求橢圓的離心率;

(2)若,設分別為橢圓的左、右焦點,斜率為的直線經(jīng)過橢圓的右焦點,且與橢圓交于兩點,若點在以為直徑的圓內(nèi)部,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國是世界上嚴重缺水的國家,某市政府為了鼓勵居民節(jié)約用水,計劃調(diào)整居民生活用水收費方案,擬確定一個合理的月用水量標準(噸),一位居民的月用水量不超過的部分按平價收費,超過的部分按議價收費,為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照, ,…, 分成9組,制成了如圖所示的頻率分布直方圖.

(1)求直方圖中的值;

(2)若將頻率視為概率,從該城市居民中隨機抽取3人,記這3人中月均用水量不低于3噸的人數(shù)為,求的分布列與數(shù)學期望.

(3)若該市政府希望使85%的居民每月的用水量不超過標準(噸),估計的值(精確到0.01),并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)

(Ⅰ)討論的極值點的個數(shù);

(Ⅱ)若對于,總有.(i)求實數(shù)的范圍; (ii)求證:對于,不等式成立.

查看答案和解析>>

同步練習冊答案