【題目】已知函數(shù).
(1)當時,求函數(shù)在上的最大值;
(2)令,若在區(qū)間上為單調遞增函數(shù),求的取值范圍;
(3)當 時,函數(shù) 的圖象與軸交于兩點 ,且 ,又是的導函數(shù).若正常數(shù) 滿足條件.證明:.
【答案】(1)-1;(2);(3)參考解析
【解析】
試題(1),可知在[,1]是增函數(shù),在[1,2]是減函數(shù),所以最大值為f(1).(2)在區(qū)間上為單調遞增函數(shù),即在上恒成立。,利用分離參數(shù)在上恒成立,即求的最大值。
(3)有兩個實根, ,兩式相減,又,
.要證:,只需證:,令可證。
試題解析:(1)
函數(shù)在[,1]是增函數(shù),在[1,2]是減函數(shù),
所以.
(2)因為,所以,
因為在區(qū)間單調遞增函數(shù),所以在(0,3)恒成立
,有=,()
綜上:
(3)∵,又有兩個實根,
∴,兩式相減,得,
∴,
于是
.
要證:,只需證:
只需證:.(*)
令,∴(*)化為 ,只證即可.
在(0,1)上單調遞增,,
即.∴.
(其他解法根據(jù)情況酌情給分)
科目:高中數(shù)學 來源: 題型:
【題目】(2017·衢州調研)已知四棱錐P-ABCD的底面ABCD是菱形,∠ADC=120°,AD的中點M是頂點P在底面ABCD的射影,N是PC的中點.
(1)求證:平面MPB⊥平面PBC;
(2)若MP=MC,求直線BN與平面PMC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知某單位甲、乙、丙三個部門共有員工60人,為調查他們的睡眠情況,通過分層抽樣獲得部分員工每天睡眼的時間,數(shù)據(jù)如下表(單位:小時)
甲部門 | 6 | 7 | 8 | |||
乙部門 | 5.5 | 6 | 6.5 | 7 | 7.5 | 8 |
丙部門 | 5 | 5.5 | 6 | 6.5 | 7 | 8.5 |
(1)求該單位乙部門的員工人數(shù)?
(2)若將每天睡眠時間不少于7小時視為睡眠充足,現(xiàn)從該單位任取1人,估計拍到的此人為睡眠充足者的概率;
(3)再從甲部門和乙部門抽出的員工中,各隨機選取一人,甲部門選出的員工記為A,乙部門選出的員工記為B,假設所有員工睡眠的時間相互獨立,求A的睡眠時間不少于B的睡眼時間的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法:
①函數(shù)的圖象和直線的公共點個數(shù)是,則的值可能是;
②若函數(shù)定義域為且滿足,則它的圖象關于軸對稱;
③函數(shù)的值域為;
④若函數(shù)在上有零點,則實數(shù)的取值范圍是.
其中正確的序號是_________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】美國一貫推行強權政治,2018年3月22日,美國總統(tǒng)特朗普在白宮簽署了對中國輸美產(chǎn)品征收關稅的總統(tǒng)備忘錄,限制中國商品進入美國市場。中國某企業(yè)計劃打入美國市場,決定從A、B兩種產(chǎn)品中只選一種進行投資生產(chǎn),已知投入生產(chǎn)這兩種產(chǎn)品的有關數(shù)據(jù)如下表:(單位:萬元)
年固定成本 | 每件產(chǎn)品成本 | 每件產(chǎn)品銷售價 | 每年最多可生產(chǎn)件數(shù) | |
A產(chǎn)品 | 40 | m | 15 | 200 |
B產(chǎn)品 | 60 | 10 | 22 | 150 |
其中固定成本與年生產(chǎn)的件數(shù)無關,m是待定的常數(shù),其值由生產(chǎn)A產(chǎn)品的原材料決定,預計,另外,年銷售件B產(chǎn)品時需交0.05萬元的附件關稅,假設生產(chǎn)出來的產(chǎn)品都能在當年銷售出去.
(1)求該廠分別投資生產(chǎn)A、B兩種產(chǎn)品的年利潤與生產(chǎn)相應產(chǎn)品的件數(shù)之間的函數(shù)關系,并求出其定義域;
(2)如何投資才可獲得最大年利潤?請設計出投資方案.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】針對國家提出的延遲退休方案,某機構進行了網(wǎng)上調查,所有參與調查的人中,持“支持”、“保留”和“不支持”態(tài)度的人數(shù)如下表所示:
支持 | 保留 | 不支持 | |
歲以下 | |||
歲以上(含歲) |
(1)在所有參與調查的人中,用分層抽樣的方法抽取個人,已知從持“不支持”態(tài)度的人中抽取了人,求的值;
(2)在持“不支持”態(tài)度的人中,用分層抽樣的方法抽取人看成一個總體,從這人中任意選取人,求至少有一人年齡在歲以下的概率.
(3)在接受調查的人中,有人給這項活動打出的分數(shù)如下: , , , , , , , , , ,把這個人打出的分數(shù)看作一個總體,從中任取一個數(shù),求該數(shù)與總體平均數(shù)之差的絕對值超過概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】獨立性檢驗中,假設:運動員受傷與不做熱身運動沒有關系.在上述假設成立的情況下,計算得的觀測值.下列結論正確的是
A. 在犯錯誤的概率不超過0.01的前提下,認為運動員受傷與不做熱身運動有關
B. 在犯錯誤的概率不超過0.01的前提下,認為運動員受傷與不做熱身運動無關
C. 在犯錯誤的概率不超過0.005的前提下,認為運動員受傷與不做熱身運動有關
D. 在犯錯誤的概率不超過0.005的前提下,認為運動員受傷與不做熱身運動無關
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com