【題目】如圖,四棱錐中,底面為矩形,⊥平面,的中點(diǎn).

(Ⅰ)證明:∥平面;

(Ⅱ)設(shè)二面角為60°,=1,=,求三棱錐的體積.

【答案】1)證明見解析;(2

【解析】

試題(1)證明線面平行,根據(jù)判定定理就是要證線線平行,而平行線的尋找,又是根據(jù)線面平行的性質(zhì)定理找到,設(shè)交點(diǎn)為,過的平面與平面的交線就是,這就是要找的平行線,由中位線定理易證;(2)要求三棱錐的體積,關(guān)鍵是求得底面三角形的面積(高為到底面的距離,即為的一半),已知條件是二面角大小為,為此可以軸建立空間直角坐標(biāo)系,設(shè) ,寫出各點(diǎn)坐標(biāo),求得平面和平面的法向量,由法向量的夾角與二面角相等或互補(bǔ)可求得,從而可求得底面積,體積.

試題解析:(1)證明:連,設(shè),連,

的中點(diǎn),,

平面,平面,

平面;

2)建立如圖所示的空間直角坐標(biāo)系,則

設(shè) .則

設(shè)為平面的法向量,則

為平面的一個(gè)法向量,

,

因?yàn)?/span>的中點(diǎn),所以三棱錐的高為,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),記的導(dǎo)函數(shù).

(1)若的極大值為,求實(shí)數(shù)的值;

(2)若函數(shù),求上取到最大值時(shí)的值;

(3)若關(guān)于的不等式上有解,求滿足條件的正整數(shù)的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】北京、張家口2022年冬奧會(huì)申辦委員會(huì)在俄羅斯索契舉辦了發(fā)布會(huì),某公司為了競標(biāo)配套活動(dòng)的相關(guān)代言,決定對旗下的某商品進(jìn)行一次評估,該商品原來每件售價(jià)為25元,年銷售8萬件.

(1)據(jù)市場調(diào)查,若價(jià)格每提高1元,銷售量將相應(yīng)減少2000件,要使銷售的總收入不低于原收入,該商品每件定價(jià)最多為多少元?

(2)為了抓住申奧契機(jī),擴(kuò)大該商品的影響力,提高年銷售量.公司決定立即對該商品進(jìn)行全面技術(shù)革新和營銷策略改革,并提高定價(jià)到元.公司擬投入萬作為技改費(fèi)用,投入50萬元作為固定宣傳費(fèi)用,投入萬元作為浮動(dòng)宣傳費(fèi)用.試問:當(dāng)該商品改革后的銷售量至少應(yīng)達(dá)到多少萬件時(shí),才可能使改革后的銷售收入不低于原收入與總投入之和?并求出此時(shí)商品的每件定價(jià).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),直線為平面上的動(dòng)點(diǎn),過點(diǎn)作直線的垂線,垂足為,且滿足

(1)求動(dòng)點(diǎn)的軌跡的方程;

(2)過點(diǎn)作直線與軌跡交于,兩點(diǎn),為直線上一點(diǎn),且滿足,若的面積為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形,,為等邊三角形,,的中點(diǎn).

1)證明:平面;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)增區(qū)間;

(2)若函數(shù)有兩個(gè)極值點(diǎn),且,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年2月22日,在韓國平昌冬奧會(huì)短道速滑男子500米比賽中,中國選手武大靖以連續(xù)打破世界紀(jì)錄的優(yōu)異表現(xiàn),為中國代表隊(duì)奪得了本屆冬奧會(huì)的首枚金牌,也創(chuàng)造中國男子冰上競速項(xiàng)目在冬奧會(huì)金牌零的突破.根據(jù)短道速滑男子500米的比賽規(guī)則,運(yùn)動(dòng)員自出發(fā)點(diǎn)出發(fā)進(jìn)入滑行階段后,每滑行一圈都要經(jīng)過4個(gè)直道與彎道的交接口.已知某男子速滑運(yùn)動(dòng)員順利通過每個(gè)交接口的概率均為,摔倒的概率均為.假定運(yùn)動(dòng)員只有在摔倒或達(dá)到終點(diǎn)時(shí)才停止滑行,現(xiàn)在用表示該運(yùn)動(dòng)員在滑行最后一圈時(shí)在這一圈后已經(jīng)順利通過的交接口數(shù).

(1)求該運(yùn)動(dòng)員停止滑行時(shí)恰好已順利通過3個(gè)交接口的概率;

(2)求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為實(shí)數(shù).

1)若函數(shù)為定義域上的單調(diào)函數(shù),求的取值范圍.

2)若,滿足不等式成立的正整數(shù)解有且僅有一個(gè),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于定義域?yàn)镈的函數(shù)y=fx,如果存在區(qū)間[m,n]D,同時(shí)滿足:

①fx[m,n]內(nèi)是單調(diào)函數(shù);

②當(dāng)定義域是[m,n]時(shí),fx的值域也是[m,n].則稱[m,n]是該函數(shù)的“和諧區(qū)間”.

1證明:[0,1]是函數(shù)y=fx=x2的一個(gè)“和諧區(qū)間”.

2求證:函數(shù)不存在“和諧區(qū)間”.

3已知:函數(shù)aR,a0有“和諧區(qū)間”[m,n],當(dāng)a變化時(shí),求出n﹣m的最大值.

查看答案和解析>>

同步練習(xí)冊答案