【題目】在某項(xiàng)娛樂(lè)活動(dòng)的海選過(guò)程中評(píng)分人員需對(duì)同批次的選手進(jìn)行考核并評(píng)分,并將其得分作為該選手的成績(jī),成績(jī)大于等于分的選手定為合格選手,直接參加第二輪比賽,大于等于分的選手將直接參加競(jìng)賽選拔賽.已知成績(jī)合格的名參賽選手成績(jī)的頻率分布直方圖如圖所示,其中的頻率構(gòu)成等比數(shù)列.

1)求的值;

2)估計(jì)這名參賽選手的平均成績(jī);

3)根據(jù)已有的經(jīng)驗(yàn),參加競(jìng)賽選拔賽的選手能夠進(jìn)入正式競(jìng)賽比賽的概率為,假設(shè)每名選手能否通過(guò)競(jìng)賽選拔賽相互獨(dú)立,現(xiàn)有名選手進(jìn)入競(jìng)賽選拔賽,記這名選手在競(jìng)賽選拔賽中通過(guò)的人數(shù)為隨機(jī)變量,求的分布列和數(shù)學(xué)期望.

【答案】(1) ;(2)84(3)分布列見(jiàn)解析,1.

【解析】

(1)利用頻率分布直方圖的性質(zhì)列式求解即可.

(2) 利用頻率分布直方圖求平均數(shù)的方法求解即可.

(3)易得隨機(jī)變量滿足二項(xiàng)分布,再根據(jù)二項(xiàng)分布的分布列與數(shù)學(xué)期望求解即可.

:(1)由題意,得

解得

(2)估計(jì)這名選手的平均成績(jī)?yōu)?/span>.

(3)由題意知,,

可能取值為,

所以

所以的分布列為

的數(shù)學(xué)期望為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐的底面是邊長(zhǎng)為1的正方形,垂直于底面.

1)求證; 

2)求平面與平面所成二面角的大;

3)設(shè)棱的中點(diǎn)為,求異面直線所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A、B是單位圓O上的兩點(diǎn)(O為圓心),∠AOB=120°,點(diǎn)C是線段AB上不與A、B重合的動(dòng)點(diǎn).MN是圓O的一條直徑,則的取值范圍是( )

A. [,0) B. [,0] C. [,1) D. [,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了迎接2000年的到來(lái),某地組織了一次乒乓球迎春幸運(yùn)賽.首先,通過(guò)身份號(hào)抽選出2000名選手,編號(hào)為1,2,…,2000,他們當(dāng)中任兩人都可以組成一對(duì)雙打選手,每對(duì)選手的編號(hào)之和稱為他們的“和號(hào)”.規(guī)定:“和號(hào)”相同的兩對(duì)選手方有資格進(jìn)行幸運(yùn)雙打賽.比賽開(kāi)始前,組委會(huì)首先從2000個(gè)編號(hào)中隨機(jī)抽出65名幸運(yùn)選手,然后找出“和號(hào)”相同的兩對(duì)選手進(jìn)行幸運(yùn)雙打賽(凡同一“和號(hào)”的選手分在同一區(qū)進(jìn)行單循環(huán)).求證:無(wú)論怎樣抽選,總有選手進(jìn)行幸運(yùn)賽.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩班各派三名同學(xué)參加知識(shí)競(jìng)賽,每人回答一個(gè)問(wèn)題,答對(duì)得10分,答錯(cuò)得0分,假設(shè)甲班三名同學(xué)答對(duì)的概率都是,乙班三名同學(xué)答對(duì)的概率分別是,,,且這六名同學(xué)答題正確與否相互之間沒(méi)有影響.

1)記“甲、乙兩班總得分之和是60分”為事件,求事件發(fā)生的概率;

2)用表示甲班總得分,求隨機(jī)變量的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱ABC-A1B1C1中,BB1⊥平面ABC,∠BAC=90°,AC=AB=AA1EBC的中點(diǎn).

1)求證:AEB1C;

2)求異面直線AEA1C所成的角的大。

3)若GC1C中點(diǎn),求二面角C-AG-E的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直四棱柱ABCD—A1B1C1D1中,AB=BD=1,,AA1=BC=2,AD∥BC.

(1)證明:BD⊥平面ABB1A1

(2)比較四棱錐D—ABB1A1與四棱錐D—A1B1C1D1的體積的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】寫(xiě)出下面平面幾何中的常見(jiàn)結(jié)論在立體幾何中也成立的所有序號(hào)______.

①四邊形內(nèi)角和為;

②垂直的兩條直線必相交;

③垂直同一條直線的兩條直線平行;

④平行同一條直線的兩條直線平行;

⑤四邊相等的四邊形,其對(duì)角線垂直;

⑥到三角形三邊距離相等的點(diǎn)是這個(gè)三角形的內(nèi)心;

⑦到一個(gè)角的兩邊距離相等的點(diǎn)必在這個(gè)角的角平分線上;

⑧在平面幾何中有一組平行線(至少3條)被兩條直線所截得的對(duì)應(yīng)線段成比例的結(jié)論,則這一結(jié)論可推廣到立體幾何中一組平行平面(至少3個(gè))被兩條直線所截得的對(duì)應(yīng)線段也成比例.”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某研究機(jī)構(gòu)對(duì)某校高二文科學(xué)生的記憶力x和判斷力y進(jìn)行統(tǒng)計(jì)分析,得下表數(shù)據(jù).

x

6

8

10

12

y

2

3

5

6

(1)請(qǐng)畫(huà)出上表數(shù)據(jù)的散點(diǎn)圖;

(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;

(3)試根據(jù)(2)中求出的線性回歸方程,預(yù)測(cè)記憶力為14的學(xué)生的判斷力.

查看答案和解析>>

同步練習(xí)冊(cè)答案