【題目】已知函數(shù)

1 試說明函數(shù)的圖象是由函數(shù)的圖象經(jīng)過怎樣的變換得到的;

2)若函數(shù),試判斷函數(shù)的奇偶性,并用反證法證明函數(shù)的最小正周期是

3)求函數(shù)的單調(diào)區(qū)間和值域.

【答案】1)見解析;(2)偶函數(shù),周期的證明見解析;(3)值域是,增區(qū)間為,減區(qū)間為

【解析】

1)先由二倍角公式和兩角差的正弦公式化函數(shù)為一個(gè)角的一個(gè)三角函數(shù)形式,然后根據(jù)三角函數(shù)圖象變換的規(guī)律求解;

2)求出的表達(dá)式,由奇偶性定義判斷奇偶性,用反證法證明周期性;

3)根據(jù)(2)中得出的性質(zhì),在一個(gè)周期內(nèi)求出函數(shù)的值域,即得函數(shù)在定義域內(nèi)值域,求出一個(gè)周期內(nèi)單調(diào)區(qū)間,根據(jù)函數(shù)的周期性可得所有單調(diào)區(qū)間(但要注意區(qū)間的連續(xù)性).

1)由題意,

圖象向右平移個(gè)單位得的圖象,再把所得圖象上所有點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉?lái)的,得的圖象,最后將所得圖象上所有點(diǎn)的縱坐標(biāo)變?yōu)樵瓉?lái)的2倍,橫坐標(biāo)不變,得的圖象.

2

,是偶函數(shù),

,的一個(gè)周期,下面用反證法證明是最小正周期,

假設(shè)存在的最小正周期,即恒成立,,

,,

,

當(dāng)時(shí),,則,,即這與矛盾,假設(shè)錯(cuò)誤,

的最小正周期.

(3)由(2),當(dāng)時(shí),,

,

,

此時(shí)當(dāng)時(shí),,單調(diào)遞增,當(dāng)時(shí),單調(diào)遞減,

的最小正周期是,∴時(shí),函數(shù)的值域是

增區(qū)間為,減區(qū)間為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2016年9月,第22屆魯臺(tái)經(jīng)貿(mào)洽談會(huì)在濰坊魯臺(tái)會(huì)展中心舉行,在會(huì)展期間某展銷商銷售一種商品,根據(jù)市場(chǎng)調(diào)查,每件商品售價(jià)(元)與銷量(萬(wàn)件)之間的函數(shù)關(guān)系如圖所示,又知供貨價(jià)格與銷量成反比,比例系數(shù)為20.(注:每件產(chǎn)品利潤(rùn)=售價(jià)-供貨價(jià)格)

(Ⅰ)求售價(jià)15元時(shí)的銷量及此時(shí)的供貨價(jià)格;

(Ⅱ)當(dāng)銷售價(jià)格為多少時(shí)總利潤(rùn)最大,并求出最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的圖象關(guān)于直線對(duì)稱,則正確的選項(xiàng)是( )

①.函數(shù)為奇函數(shù)

②.函數(shù)上單調(diào)遞增

③.若,則的最小值為

④.函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度得到函數(shù)的圖象

A.①③B.①④C.①②③D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地舉辦水果觀光采摘節(jié),并推出配套旅游項(xiàng)目,統(tǒng)計(jì)了4月份100名游客購(gòu)買水果的情況,得到如圖所示的頻率分布直方圖.

1)若將消費(fèi)金額不低于80元的游客稱為“水果達(dá)人”,現(xiàn)用分層抽樣的方法從樣本的“水果達(dá)人”中抽取5人,求這5人中消費(fèi)金額不低于100元的人數(shù);

2)從(1)中的5人中抽取2人作為幸運(yùn)客戶免費(fèi)參加配套旅游項(xiàng)目,請(qǐng)列出所有的可能結(jié)果,并求這2人中至少有1人購(gòu)買金額不低于100元的概率;

3)為吸引顧客,該地特推出兩種促銷方案,

方案一:每滿80元可立減8元;

方案二:金額超過50元但又不超過80元的部分打9折,金額超過80元但又不超過100元的部分打8折,金額超過100元的部分打7折.

若水果的價(jià)格為11元/千克,某游客要購(gòu)買10千克,應(yīng)該選擇哪種方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)),且直線與曲線交于兩點(diǎn),以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系.

(1)求曲線的極坐標(biāo)方程;

(2) 已知點(diǎn)的極坐標(biāo)為,求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了調(diào)查某大學(xué)學(xué)生在某天上網(wǎng)的時(shí)間,隨機(jī)對(duì)100名男生和100名女生進(jìn)行了不記名的問卷調(diào)查,得到了如下的統(tǒng)計(jì)結(jié)果:

(1)若該大學(xué)共有女生750人,試估計(jì)其中上網(wǎng)時(shí)間不少于60分鐘的人數(shù);

(2)完成聯(lián)表,并回答能否有90%的把握認(rèn)為“大學(xué)生上網(wǎng)時(shí)間與性別有關(guān)”.

附:,其中nabcd為樣本容量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若函數(shù)時(shí)恒成立,求實(shí)數(shù)的取值范圍;

(3)若函數(shù),求證:函數(shù)的極大值小于1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的圖象上有一點(diǎn)列,點(diǎn)軸上的射影是,且(),.

(1)求證:是等比數(shù)列,并求出數(shù)列的通項(xiàng)公式;

(2)對(duì)任意的正整數(shù),當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

(3)設(shè)四邊形的面積是,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【選修4-4,坐標(biāo)系與參數(shù)方程】

在直角坐標(biāo)系中,直線的參數(shù)方程為t為參數(shù)),在以O為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為

)求直線的普通方程與曲線C的直角坐標(biāo)方程;

)若直線軸的交點(diǎn)為P,直線與曲線C的交點(diǎn)為A,B,的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案