如圖,在直三棱柱中,D、E分別為、AD的中點(diǎn),F(xiàn)為上的點(diǎn),且

(I)證明:EF∥平面ABC;
(Ⅱ)若,,求二面角的大小.

(I) EF∥平面ABC;(II).

解析試題分析:(I) 取線段的中點(diǎn),證明平面平面,就可以證明平面;
(II)通過解,發(fā)現(xiàn),又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/78/a/1l0dt2.png" style="vertical-align:middle;" />平面,所以我們可以為原點(diǎn)建立空間直角坐標(biāo)系,求出平面和平面的法向量的夾角,即為所求角或者是所求角的補(bǔ)角.
試題解析:(I)取線段的中點(diǎn),并連接,則,,
      ,,
平面平面,平面,平面
(II)已知在中,
,可求得
   
如圖建立空間直角坐標(biāo)系

,,.
,
設(shè)平面的一個(gè)法向量
,即
可取
設(shè)平面的一個(gè)法向量
,即
可取

二面角的大小為
考點(diǎn):1.線面平行的證明;2.空間直角坐標(biāo)系的建立;3.法向量的求法;4.利用向量解決空間幾何問題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖是一個(gè)斜三棱柱,已知、平面平面、、,又、分別是、的中點(diǎn).

(1)求證:∥平面; (2)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,兩座建筑物AB,CD的底部都在同一個(gè)水平面上,且均與水平面垂直,它們的高度分別是9m和15m,從建筑物AB的頂部A看建筑物CD的張角

(1)求BC的長度;
(2)在線段BC上取一點(diǎn)P(點(diǎn)P與點(diǎn)B,C不重合),從點(diǎn)P看這兩座建筑物的張角分別為,,問點(diǎn)P在何處時(shí),最小?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

平行四邊形中,,,以為折線,把折起,使平面平面,連結(jié).

(Ⅰ)求證:;
(Ⅱ)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,在直棱柱ABCD-A1B1C1D1中,AD∥BC,∠BAD=90°,AC⊥BD,BC=1,AD=AA1=3.

(1)證明:AC⊥B1D;
(2)求直線B1C1與平面ACD1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在如圖所示的幾何體中,四邊形是菱形,是矩形,平面⊥平面,,的中點(diǎn).

(Ⅰ)求證://平面
(Ⅱ)在線段上是否存在點(diǎn),使二面角的大小為?若存在,求出的長;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在直三棱柱中,,點(diǎn)分別為的中點(diǎn).

(1)證明:平面;
(2)平面MNC與平面MAC夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,邊長為2的正方形ABCD,E,F分別是AB,BC的中點(diǎn),將△AED,△DCF分別沿DE,DF折起,使A,C兩點(diǎn)重合于

(1)求證:⊥EF;
(2)求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐中,四邊形是菱形,,E為PB的中點(diǎn).

(Ⅰ)求證:平面
(Ⅱ)求證:平面平面.   

查看答案和解析>>

同步練習(xí)冊(cè)答案