【題目】已知拋物線,過的直線與拋物線C交于兩點,點A在第一象限,拋物線C兩點處的切線相互垂直.

1)求拋物線C的標準方程;

2)若點P為拋物線C上異于的點,直線均不與軸平行,且直線APBP交拋物線C的準線分別于兩點,.

i)求直線的斜率;

(ⅱ)求的最小值.

【答案】1;(2)(i;(ⅱ)4.

【解析】

1)利用導數(shù)的幾何意義分別求得處切線的斜率,再根據(jù)斜率相乘為,可得的值,即可得答案;

2)(i)根據(jù)可得點橫坐標的關系,再結(jié)合韋達定理,可求得斜率;

ii)由(i)易知,設,則,再分別求出點的橫坐標用表示,利用換元法可求得的最值.

1)設.

拋物線C的方程可化為.

拋物線C兩點處的切線的斜率分別為.

由題可知直線l的斜率存在,故可設直線1的方程為

聯(lián)立,消去y可得,

.

,解得.

∴拋物線C的標準方程為;

2)(i)由(1)可得

,可得,

又點A在第一象限,解得.

∴直線AB的斜率為

ii)由(i)易知.

,則.

由題可知,故.

∴直線AP的斜率,同理可得.

∴直線,當時,.

直線,當時,.

.

當且僅當,即,也即時,取得最小值4.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)處的切線方程為,求實數(shù),的值;

(2)若函數(shù)兩處取得極值,求實數(shù)的取值范圍;

(3)在(2)的條件下,若,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國古代數(shù)學著作《算法統(tǒng)宗》中有這樣一個問題:“三百七十八里關,初行健步不為難,次日腳痛減一半,六朝才得到其關……”其大意為:“某人從距離關口三百七十八里處出發(fā),第一天走得輕快有力,從第二天起,由于腳痛,每天走的路程為前一天的一半,共走了六天到達關口……” 那么該人第一天走的路程為______________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三棱錐PABC的平面展開圖中,四邊形ABCD為邊長等于的正方形,△ABE和△BCF均為正三角形,在三棱錐PABC中:

1)證明:平面PAC⊥平面ABC;

2)若點M為棱PA上一點且,求二面角PBCM的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解某地網(wǎng)民瀏覽購物網(wǎng)站的情況,從該地隨機抽取100名網(wǎng)民進行調(diào)查,其中男性、女性人數(shù)分別為4555.下面是根據(jù)調(diào)查結(jié)果繪制的網(wǎng)民日均瀏覽購物網(wǎng)站時間的頻率分布直方圖,將日均瀏覽購物網(wǎng)站時間不低于40分鐘的網(wǎng)民稱為“網(wǎng)購達人”,已知“網(wǎng)購達人”中女性有10.

1)根據(jù)已知條件完成下面的列聯(lián)表,并判斷是否有90%的把握認為是否為“網(wǎng)購達人”與性別有關;

非網(wǎng)購達人

網(wǎng)購達人

總計

10

總計

2)將上述調(diào)査所得到的頻率視為概率,現(xiàn)在從該地的網(wǎng)民中隨機抽取3名,記被抽取的3名網(wǎng)民中的“網(wǎng)購達人”的人數(shù)為X,求X的分布列、數(shù)學期望和方差.

參考公式:,其中.

參考數(shù)據(jù):

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求證:函數(shù)有唯一零點;

(2)若對任意恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】科赫曲線是一種外形像雪花的幾何曲線,一段科赫曲線可以通過下列操作步驟構(gòu)造得到,任畫一條線段,然后把它均分成三等分,以中間一段為邊向外作正三角形,并把中間一段去掉,這樣,原來的一條線段就變成了4條小線段構(gòu)成的折線,稱為“一次構(gòu)造”;用同樣的方法把每條小線段重復上述步驟,得到16條更小的線段構(gòu)成的折線,稱為“二次構(gòu)造”,…,如此進行“次構(gòu)造”,就可以得到一條科赫曲線.若要在構(gòu)造過程中使得到的折線的長度達到初始線段的1000倍,則至少需要通過構(gòu)造的次數(shù)是( .(取,

A.16B.17C.24D.25

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線C的參數(shù)方程為:為參數(shù)).在以坐標原點為極點,x軸正半軸為極軸的極坐標系中,直線l的極坐標方程為.

(Ⅰ)求曲線C的普通方程和直線l的直角坐標方程;

(Ⅱ)設點P的直角坐標為,若直線l與曲線C分別相交于A,B兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)當時,證明:

2)若只有一個零點,求.

查看答案和解析>>

同步練習冊答案