【題目】已知函數(shù).

1)若,求的最小值;

2)若,且,證明:.

【答案】1;(2)證明見解析

【解析】

1)當(dāng)時(shí),,先求導(dǎo)可得,設(shè),利用導(dǎo)函數(shù)可判斷上單調(diào)遞增,由,即可判斷的單調(diào)性,進(jìn)而求解;

2)先求導(dǎo)可得,容易得到上單調(diào)遞增,由,即可判斷上單調(diào)遞減,在上單調(diào)遞增,設(shè),則,,設(shè),利用導(dǎo)函數(shù)可判斷上單調(diào)遞增,,,則可得,,進(jìn)而由的單調(diào)性求證即可.

1)解:當(dāng)時(shí),,

所以,

設(shè),則,所以上單調(diào)遞增,

上單調(diào)遞增,

因?yàn)?/span>,

所以當(dāng)時(shí),;當(dāng)時(shí),,

因此上單調(diào)遞減,在上單調(diào)遞增,

所以.

2)證明:,則,所以上單調(diào)遞增,因?yàn)?/span>,

所以當(dāng)時(shí),;當(dāng)時(shí),,

因此,上單調(diào)遞減,在上單調(diào)遞增,

,不妨設(shè),則,,

,

,

當(dāng)時(shí),,

,所以上單調(diào)遞增;

所以當(dāng)時(shí),時(shí),,

因此,

,所以,

因?yàn)?/span>,,上單調(diào)遞增,

所以,即,故.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地開發(fā)一片荒地,如圖,荒地的邊界是以C為圓心,半徑為1千米的圓周.已有兩條互相垂直的道路OE,OF,分別與荒地的邊界有且僅有一個(gè)接觸點(diǎn)AB.現(xiàn)規(guī)劃修建一條新路(由線段MP,,線段QN三段組成),其中點(diǎn)M,N分別在OEOF上,且使得MP,QN所在直線分別與荒地的邊界有且僅有一個(gè)接觸點(diǎn)P,Q所對(duì)的圓心角為.記∠PCA(道路寬度均忽略不計(jì)).

1)若,求QN的長(zhǎng)度;

2)求新路總長(zhǎng)度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為t為參數(shù),).在以坐標(biāo)原點(diǎn)為極點(diǎn)、x軸的非負(fù)半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為

1)若點(diǎn)在直線l上,求線l的直角坐標(biāo)方程和曲線C的直角坐標(biāo)方程;

2)已知,點(diǎn)P在直線l上,點(diǎn)Q在曲線C上,且的最小值為,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定點(diǎn)S( -2,0) ,T(2,0),動(dòng)點(diǎn)P為平面上一個(gè)動(dòng)點(diǎn),且直線SP、TP的斜率之積為.

1)求動(dòng)點(diǎn)P的軌跡E的方程;

2)設(shè)點(diǎn)B為軌跡Ey軸正半軸的交點(diǎn),是否存在直線l,使得l交軌跡EM,N兩點(diǎn),且F(10)恰是△BMN的垂心?若存在,求l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)集,其中,且,若對(duì),兩數(shù)中至少有一個(gè)屬于,則稱數(shù)集具有性質(zhì).

1)分別判斷數(shù)集與數(shù)集是否具有性質(zhì),說明理由;

2)已知數(shù)集具有性質(zhì),判斷數(shù)列,是否為等差數(shù)列,若是等差數(shù)列,請(qǐng)證明;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是菱形,是棱的中點(diǎn),.

1)證明:平面;

2)設(shè)是線段的中點(diǎn),且平面,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)F2是雙曲線的右焦點(diǎn),動(dòng)點(diǎn)A在雙曲線左支上,直線l1txy+t20與直線l2x+ty+2t10的交點(diǎn)為B,則|AB|+|AF2|的最小值為(

A.8B.C.9D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】紅鈴蟲(Pectinophora gossypiella)是棉花的主要害蟲之一,其產(chǎn)卵數(shù)與溫度有關(guān).現(xiàn)收集到一只紅鈴蟲的產(chǎn)卵數(shù)y(個(gè))和溫度x(℃)的8組觀測(cè)數(shù)據(jù),制成圖1所示的散點(diǎn)圖.現(xiàn)用兩種模型①,②分別進(jìn)行擬合,由此得到相應(yīng)的回歸方程并進(jìn)行殘差分析,進(jìn)一步得到圖2所示的殘差圖.

根據(jù)收集到的數(shù)據(jù),計(jì)算得到如下值:

25

2.89

646

168

422688

48.48

70308

表中;;;;

1)根據(jù)殘差圖,比較模型①、②的擬合效果,應(yīng)選擇哪個(gè)模型?并說明理由;

2)根據(jù)(1)中所選擇的模型,求出y關(guān)于x的回歸方程(系數(shù)精確到0.01),并求溫度為34℃時(shí),產(chǎn)卵數(shù)y的預(yù)報(bào)值.

(參考數(shù)據(jù):,

附:對(duì)于一組數(shù)據(jù),,,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《中國(guó)制造2025》是經(jīng)國(guó)務(wù)院總理李克強(qiáng)簽批,由國(guó)務(wù)院于20155月印發(fā)的部署全面推進(jìn)實(shí)施制造強(qiáng)國(guó)的戰(zhàn)略文件,是中國(guó)實(shí)施制造強(qiáng)國(guó)戰(zhàn)略第一個(gè)十年的行動(dòng)綱領(lǐng).制造業(yè)是國(guó)民經(jīng)濟(jì)的主體,是立國(guó)之本、興國(guó)之器、強(qiáng)國(guó)之基.發(fā)展制造業(yè)的基本方針為質(zhì)量為先,堅(jiān)持把質(zhì)量作為建設(shè)制造強(qiáng)國(guó)的生命線.某制造企業(yè)根據(jù)長(zhǎng)期檢測(cè)結(jié)果,發(fā)現(xiàn)生產(chǎn)的產(chǎn)品質(zhì)量與生產(chǎn)標(biāo)準(zhǔn)的質(zhì)量差都服從正態(tài)分布Nμσ2),并把質(zhì)量差在(μσμ+σ)內(nèi)的產(chǎn)品為優(yōu)等品,質(zhì)量差在(μ+σ,μ+2σ)內(nèi)的產(chǎn)品為一等品,其余范圍內(nèi)的產(chǎn)品作為廢品處理.優(yōu)等品與一等品統(tǒng)稱為正品.現(xiàn)分別從該企業(yè)生產(chǎn)的正品中隨機(jī)抽取1000件,測(cè)得產(chǎn)品質(zhì)量差的樣本數(shù)據(jù)統(tǒng)計(jì)如下:

1)根據(jù)頻率分布直方圖,求樣本平均數(shù)

2)根據(jù)大量的產(chǎn)品檢測(cè)數(shù)據(jù),檢查樣本數(shù)據(jù)的方差的近似值為100,用樣本平均數(shù)作為μ的近似值,用樣本標(biāo)準(zhǔn)差s作為σ的估計(jì)值,求該廠生產(chǎn)的產(chǎn)品為正品的概率.(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表)

[參考數(shù)據(jù):若隨機(jī)變量ξ服從正態(tài)分布Nμ,σ2),則:Pμσξμ+σ≈0.6827Pμ2σξμ+2σ≈0.9545,Pμ3σξμ+3σ≈0.9973

3)假如企業(yè)包裝時(shí)要求把3件優(yōu)等品球和5件一等品裝在同一個(gè)箱子中,質(zhì)檢員每次從箱子中摸出三件產(chǎn)品進(jìn)行檢驗(yàn),記摸出三件產(chǎn)品中優(yōu)等品球的件數(shù)為X,求X的分布列以及期望值.

查看答案和解析>>

同步練習(xí)冊(cè)答案