已知函數(shù)與函數(shù)在點(diǎn)處有公共的切線,設(shè).
(1) 求的值
(2)求在區(qū)間上的最小值.
(1);(2)當(dāng)時(shí), 在上的最小值為
當(dāng)時(shí),在上的最小值為
當(dāng)時(shí), 在上的最小值為.
解析試題分析:(1)利用導(dǎo)數(shù)的幾何意義,先求導(dǎo),然后把x=1代入即可求出a的值;(2)由(1)可知,根據(jù)F(x)的函數(shù)形式,可以利用求導(dǎo)的方法來解決問題,在解題的過程中要注意對(duì)參數(shù)m進(jìn)行討論.
試題解析:(I)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ed/b/jytga.png" style="vertical-align:middle;" />所以在函數(shù)的圖象上
又,所以
所以 3分
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/91/c/2djsj2.png" style="vertical-align:middle;" />,其定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/3f/6/sbe2f1.png" style="vertical-align:middle;" />
5分
當(dāng)時(shí),,
所以在上單調(diào)遞增
所以在上最小值為 7分
當(dāng)時(shí),令,得到(舍)
當(dāng)時(shí),即時(shí),對(duì)恒成立,
所以在上單調(diào)遞增,其最小值為 9分
當(dāng)時(shí),即時(shí), 對(duì)成立,
所以在上單調(diào)遞減,
其最小值為 11分
當(dāng),即時(shí), 對(duì)成立, 對(duì)成立
所以在單調(diào)遞減,在上單調(diào)遞增
其最小值為12分
綜上,當(dāng)時(shí), 在上的最小值為
當(dāng)時(shí),在上的最小值為
當(dāng)時(shí), 在上的最小值為.
考點(diǎn):(1)導(dǎo)數(shù)的幾何意義;(2)導(dǎo)數(shù)在函數(shù)中的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知()
(1)若方程有3個(gè)不同的根,求實(shí)數(shù)的取值范圍;
(2)在(1)的條件下,是否存在實(shí)數(shù),使得在上恰有兩個(gè)極值點(diǎn),且滿足,若存在,求實(shí)數(shù)的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),且是函數(shù)的一個(gè)極小值點(diǎn).
(1)求實(shí)數(shù)的值;
(2)求在區(qū)間上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(,為自然對(duì)數(shù)的底數(shù)).
(1)若曲線在點(diǎn)處的切線平行于軸,求的值;
(2)求函數(shù)的極值;
(3)當(dāng)的值時(shí),若直線與曲線沒有公共點(diǎn),求的最大值.
(注:可能會(huì)用到的導(dǎo)數(shù)公式:;)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),函數(shù)
⑴當(dāng)時(shí),求函數(shù)的表達(dá)式;
⑵若,函數(shù)在上的最小值是2 ,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
一個(gè)圓柱形圓木的底面半徑為1m,長為10m,將此圓木沿軸所在的平面剖成兩個(gè)部分.現(xiàn)要把其中一個(gè)部分加工成直四棱柱木梁,長度保持不變,底面為等腰梯形(如圖所示,其中O為圓心,在半圓上),設(shè),木梁的體積為V(單位:m3),表面積為S(單位:m2).
(1)求V關(guān)于θ的函數(shù)表達(dá)式;
(2)求的值,使體積V最大;
(3)問當(dāng)木梁的體積V最大時(shí),其表面積S是否也最大?請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
定義在定義域內(nèi)的函數(shù),若對(duì)任意的都有,則稱函數(shù)為“媽祖函數(shù)”,否則稱“非媽祖函數(shù)”.試問函數(shù),()是否為“媽祖函數(shù)”?如果是,請(qǐng)給出證明;如果不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),,其中.
(Ⅰ)求的極值;
(Ⅱ)若存在區(qū)間,使和在區(qū)間上具有相同的單調(diào)性,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com