(1)求函數(shù)f(x)=2x-lnx的單調(diào)區(qū)間
(2)過(guò)原點(diǎn)作曲線(xiàn)y=ex的切線(xiàn),求切點(diǎn)的坐標(biāo)及斜率.
解:(1)定義域?yàn)?0,+∞) 1分 2分 令,解得 令,解得 4分 所以增區(qū)間是(,+∞),減區(qū)間是(0,) 6分 (2)設(shè)切點(diǎn),求切線(xiàn)方程為 8分 將(0,0)代入,解得 10分 所以切點(diǎn)坐標(biāo)為(1,e),斜率e 12分 |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(1)求函數(shù)f(x)的定義域;
(2)判斷函數(shù)f(x)的單調(diào)性,并給出證明;
(3)已知函數(shù)f(x)的反函數(shù)f -1(x),問(wèn)函數(shù)y=f -1(x)的圖象與x軸有交點(diǎn)嗎?若有,求出交點(diǎn)坐標(biāo);若無(wú)交點(diǎn),說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(1)求函數(shù)f(x)的最大值和最小正周期;
(2)將函數(shù)y=f(x)的圖象按向量d平移,使平移后得到的圖象關(guān)于坐標(biāo)原點(diǎn)成中心對(duì)稱(chēng),求長(zhǎng)度最小的d.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年山西省忻州一中高一下學(xué)期期中考試數(shù)學(xué)文科試卷(帶解析) 題型:解答題
設(shè)函數(shù)f(x)= ×,其中向量="(2cosx,1)," =(cosx, sin2x+m).
(1)求函數(shù)f(x)的最小正周期和f(x)在[0, p]上的單調(diào)遞增區(qū)間;
(2)當(dāng)xÎ[0]時(shí),ô f(x)ô <4恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆廣東省湛江市高二第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿(mǎn)分12分)
右圖是函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的部分圖象.
(1)求函數(shù)f(x)的解析式;
(2)若f=,0<α<,求cosα的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012屆度遼寧省沈陽(yáng)市高三數(shù)學(xué)質(zhì)量檢測(cè)試卷 題型:解答題
已知函數(shù)f(x)=是定義在(-1,1)上的奇函數(shù),且f()=.
(1)求函數(shù)f(x)的解析式;
(2)用定義證明f(x)在(-1,1)上是增函數(shù);
(3)解不等式f(t-1)+f(t)<0.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com