已知正方形ABCD的邊長為4,E、F分別是AB、AD的中點,GC⊥平面ABCD,且GC=2,則點B到平面EFG的距離為(  )
分析:利用題設條件推導出BD∥平面EFG,從而得到BD和平面EFG的距離就是點B到平面EFG的距離,作OK⊥HG交HG于點K,由兩平面垂直的性質(zhì)定理知OK⊥平面EFG,所以線段OK的長就是點B到平面EFG的距離.
解答:解:如圖,連接EG、FG、EF、BD、AC、EF、BD分別交AC于H、O.
因為ABCD是正方形,E、F分別為AB和AD的中點,故EF∥BD,H為AO的中點.
由直線和平面平行的判定定理知BD∥平面EFG,
所以BD和平面EFG的距離就是點B到平面EFG的距離.
∵BD⊥AC,∴EF⊥HC.
∵GC⊥平面ABCD,∴EF⊥GC,
∵HC∩GC=C,∴EF⊥平面HCG.
∵EF?平面EFG,∴平面EFG⊥平面HCG,HG是這兩個垂直平面的交線.
作OK⊥HG交HG于點K,由兩平面垂直的性質(zhì)定理知OK⊥平面EFG,
所以線段OK的長就是點B到平面EFG的距離.
∵正方形ABCD的邊長為4,GC=2,
∴AC=4
2
,HO=
2
,HC=3
2

∴在Rt△HCG中,HG=
18+4
=
22

由于Rt△HKO和Rt△HCG有一個銳角是公共的,
故Rt△HKO∽△HCG.
∴OK=
HO•GC
HG
=
2
×2
22
=
2
11
11

即點B到平面EFG的距離為
2
11
11

故選B.
點評:本小題主要考查直線與平面的位置關系、平面與平面的位置關系、點到平面的距離等有關知識,考查學生的空間想象能力和思維能力,屬于中檔題.解決此類問題應該注意從三維空間向二維平面的轉(zhuǎn)化,從而找到解題的捷徑.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知正方形ABCD的邊長為2,中心為O,四邊形PACE是直角梯形,設PA⊥平面ABCD,且PA=2,CE=1,
(1)求證:面PAD∥面BCE.
(2)求PO與平面PAD所成角的正弦.
(3)求二面角P-EB-C的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知正方形ABCD的中心為E(-1,0),一邊AB所在的直線方程為x+3y-5=0,求其它三邊所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正方形ABCD的邊長是4,對角線AC與BD交于O,將正方形ABCD沿對角線BD折成60°的二面角,并給出下面結(jié)論:①AC⊥BD;②AD⊥CO;③△AOC為正三角形;④cos∠ADC=
3
4
,則其中的真命題是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正方形ABCD的邊長為1,設
AB
=
a
,
BC
=
b
AC
=
c
,則|
a
-
b
+
c
|等于(  )
A、0
B、
2
C、2
D、2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正方形ABCD的邊長為
2
,
AB
=
a
,
BC
=
b
AC
=
c
,則|
a
+
b
+
c
|
=
4
4

查看答案和解析>>

同步練習冊答案