(本小題滿分12分)
在直三棱柱中, AC=4,CB=2,AA1=2,
,E、F分別是的中點。

(1)證明:平面平面;
(2)證明:平面ABE;
(3)設(shè)P是BE的中點,求三棱錐的體積。
(1)對于面面垂直的證明,一般要通過線面垂直的證明來得到,分析條件得到,得到證明。
(2)對于線面平行的證明,主要是利用線線平行來判定得到 。(3)

試題分析:(1)證明:在,∵AC=2BC=4,
  由已知 

又∵
(2)證明:取AC的中點M,連結(jié) ,
∴ 直線FM//面ABE在矩形中,E、M都是中點 ∴
∴直線又∵ ∴ 

(3)在棱AC上取中點G,連結(jié)EG、BG,在BG上取中點O,
連結(jié)PO,則PO//點P到面的距離等于點O到平面的距離。
過O作OH//AB交BC與H,則平面 在等邊中可知
中,可得
點評:解決該試題的關(guān)鍵是熟練的運用線面和面面的判定定理和性質(zhì)定理解題,屬于中檔題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
如圖,在四棱錐中,平面平面,,是等邊三角形,已知,

(Ⅰ)設(shè)上的一點,證明:平面平面;
(Ⅱ)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)如圖,在正方體ABCD-A1B1C1D1中,E、F、G分別是CB、CD、CC1的中點,

(1)求證:平面A B1D1∥平面EFG;
(2)求證:平面AA1C⊥面EFG.
(3)求異面直線AC與A1B所成的角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,邊長為a的正方體ABCD-A1B1C1D1中,E為CC1的中點.

(1)求直線A1E與平面BDD1B1所成的角的正弦值
(2)求點E到平面A1DB的距離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,在四棱錐中,平面平面,是正三角形,已知

(1) 設(shè)上的一點,求證:平面平面;
(2) 求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知表示兩個互相垂直的平面,表示一對異面直線,則的一個充分條件是(  )
A.     B.
C.      D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一個多面體的直觀圖和三視圖如圖所示,其中、分別是、的中點,上的一動點,主視圖與俯視圖都為正方形。

⑴求證:;
⑵當時,在棱上確定一點,使得∥平面,并給出證明。
⑶求二面角的平面角余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分10分)
如圖,已知正四棱柱ABCD—A1B1C1D1中,底面邊長AB=2,側(cè)棱BB1的長為4,過點B作B1C的垂線交側(cè)棱CC1于點E,交B1C于點F,

⑴求證:A1C⊥平面BDE;
⑵求A1B與平面BDE所成角的正弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,斜三棱柱中,側(cè)面底面ABC,側(cè)面是菱形,,EF分別是、AB的中點.

求證:(1)EF∥平面;
(2)平面CEF⊥平面ABC

查看答案和解析>>

同步練習(xí)冊答案