【題目】給出下列命題:
①定義在R上的函數(shù)f(x)滿足f(2)>f(1),則f(x)一定不是R上的減函數(shù);
②用反證法證明命題“若實數(shù)a,b,滿足a2+b2=0,則a,b都為0”時,“假設命題的結(jié)論不成立”的敘述是“假設a,b都不為0”.
③把函數(shù)y=sin(2x+ )的圖象向右平移 個單位長度,所得到的圖象的函數(shù)解析式為y=sin2x.
④“a=0”是“函數(shù)f(x)=x3+ax2(x∈R)為奇函數(shù)”的充分不必要條件.
其中所有正確命題的序號為

【答案】①③
【解析】解:對于①定義在R上的函數(shù)f(x)滿足f(2)>f(1),則f(x)在R上不一定是增函數(shù),但f(x)一定不是R上的減函數(shù);故正確

對于②由于“a、b全為0(a、b∈R)”的否定為:“a、b至少有一個不為0”,故不正確;

對于③把函數(shù)y=sin(2x+ =sin[2(x+ )]的圖象向右平移 個單位長度,所得到的圖象的函數(shù)解析式為y=sin2x,故正確,

對于④函數(shù)f(x)=x3+ax2(x∈R)為奇函數(shù)f(﹣x)+f(x)=02ax2=0,x∈R,2ax2=0a=0.因此“a=0”是“函數(shù)f(x)=x3+ax2(x∈R)為奇函數(shù)”的充要條件,故不正確,

故答案為:①③.

①根據(jù)函數(shù)的增減性的定義判斷.②根據(jù)命題的否定即可判斷.③函數(shù)平移關系判斷..④利用充分條件和必要條件的定義進行判斷.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=
(Ⅰ)求函數(shù)f(x)的定義域;
(Ⅱ)判定f(x)的奇偶性并證明;
(Ⅲ)用函數(shù)單調(diào)性定義證明:f(x)在(1,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E是PD的中點.
(1)證明:PB∥平面AEC;
(2)設AP=1,AD= ,三棱錐P﹣ABD的體積V= ,求A到平面PBC的距離.
(3)在(2)的條件下求直線AP與平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四面體中, 平面, , , .

求四面體的四個面的面積中,最大的面積是多少?

Ⅱ)證明:在線段上存在點,使得,并求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,設橢圓C1 =1(a>b>0),長軸的右端點與拋物線C2:y2=8x的焦點F重合,且橢圓C1的離心率是
(1)求橢圓C1的標準方程;
(2)過F作直線l交拋物線C2于A,B兩點,過F且與直線l垂直的直線交橢圓C1于另一點C,求△ABC面積的最小值,以及取到最小值時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學為提升學生的英語學習能力,進行了主題分別為“聽”、“說”、“讀”、“寫”四場競賽.規(guī)定:每場競賽的前三名得分分別為, ,且, , ),選手的最終得分為各場得分之和.最終甲、乙、丙三人包攬了每場競賽的前三名,在四場競賽中,已知甲最終分為分,乙最終得分為分,丙最終得分為分,且乙在“聽”這場競賽中獲得了第一名,則“聽”這場競賽的第三名是(

A. B. C. D. 甲和丙都有可能

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在由圓O:x2+y2=1和橢圓C: =1(a>1)構(gòu)成的“眼形”結(jié)構(gòu)中,已知橢圓的離心率為 ,直線l與圓O相切于點M,與橢圓C相交于兩點A,B.
(1)求橢圓C的方程;
(2)是否存在直線l,使得 = ,若存在,求此時直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知線段AB的長為2,動點C滿足 (μ為常數(shù),μ>﹣1),且點C始終不在以點B為圓心 為半徑的圓內(nèi),則μ的范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=aln(x+1)+ x2﹣x,其中a為非零實數(shù).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若y=f(x)有兩個極值點x1 , x2 , 且x1<x2 , 求證:

查看答案和解析>>

同步練習冊答案