【題目】如圖,四面體中, 平面, , , .

求四面體的四個面的面積中,最大的面積是多少?

Ⅱ)證明:在線段上存在點,使得,并求的值.

【答案】(Ⅰ) ;(Ⅱ)證明見解析.

【解析】試題分析:(1)易得, , , 均為直角三角形,且的面積最大,進而求解即可;

(2)在平面ABC內(nèi),過點BBNAC,垂足為N.在平面PAC內(nèi),過點NMNPAPC于點M,連接BM,可證得AC⊥平面MBN從而使得ACBM,利用相似和平行求解即可.

試題解析:

1由題設(shè)AB1,AC2,BC,

可得,所以,

PA⊥平面ABC,BC、AB平面ABC,所以, ,

所以,

又由于PA∩ABA,故BC⊥平面PAB,

PB平面PAB,所以,

所以 , , 均為直角三角形,且的面積最大,

2證明:在平面ABC內(nèi),過點BBNAC,垂足為N.在平面PAC內(nèi),過點NMNPAPC于點M,連接BM

PA⊥平面ABCPAAC,所以MNAC

由于BNMNN,故AC⊥平面MBN

BM平面MBN,所以ACBM

因為相似, ,

從而NCACAN

MNPA,得

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】求函數(shù)f(x)=﹣ x3+4x﹣1在[0,3]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于區(qū)間,若函數(shù)同時滿足:①上是單調(diào)函數(shù);②函數(shù), 的值域是,則稱區(qū)間為函數(shù)保值區(qū)間

求函數(shù)的所有保值區(qū)間

函數(shù)是否存在保值區(qū)間?若存在,求出的取值范圍;若不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知U={y|y=log2x,x>1},P={y|y= ,x>2},則UP=(
A.[ ,+∞)
B.(0,
C.(0,+∞)
D.(﹣∞,0)∪( ,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知△ABC的兩頂點坐標A(﹣1,0),B(1,0),圓E是△ABC的內(nèi)切圓,在邊AC,BC,AB上的切點分別為P,Q,R,|CP|=1(從圓外一點到圓的兩條切線段長相等),動點C的軌跡為曲線M.
(I)求曲線M的方程;
(Ⅱ)設(shè)直線BC與曲線M的另一交點為D,當點A在以線段CD為直徑的圓上時,求直線BC的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .

(1)當時,求函數(shù)的值域;

(2)如果對任意的,不等式恒成立,求實數(shù)的取值范圍;

(3)是否存在實數(shù),使得函數(shù)的最大值為0,若存在,求出的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列命題:
①定義在R上的函數(shù)f(x)滿足f(2)>f(1),則f(x)一定不是R上的減函數(shù);
②用反證法證明命題“若實數(shù)a,b,滿足a2+b2=0,則a,b都為0”時,“假設(shè)命題的結(jié)論不成立”的敘述是“假設(shè)a,b都不為0”.
③把函數(shù)y=sin(2x+ )的圖象向右平移 個單位長度,所得到的圖象的函數(shù)解析式為y=sin2x.
④“a=0”是“函數(shù)f(x)=x3+ax2(x∈R)為奇函數(shù)”的充分不必要條件.
其中所有正確命題的序號為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于數(shù)集,其中, .定義向量集.若對于任意,存在,使得,則稱具有性質(zhì).例如具有性質(zhì).

(1)若,且具有性質(zhì),求的值;

(2)若具有性質(zhì),求證: ,且當時, .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的首項a1=a(a>0),其前n項和為Sn , 設(shè)bn=an+an+1(n∈N*).
(1)若a2=a+1,a3=2a2 , 且數(shù)列{bn}是公差為3的等差數(shù)列,求S2n
(2)設(shè)數(shù)列{bn}的前n項和為Tn , 滿足Tn=n2
①求數(shù)列{an}的通項公式;
②若對n∈N*,且n≥2,不等式(an﹣1)(an+1-1)≥2(1﹣n)恒成立,求a的取值范圍.

查看答案和解析>>

同步練習冊答案