甲、乙兩人玩一種游戲:在裝有質(zhì)地、大小完全相同,編號分別為1,2,3,4,5五個球的口袋中,甲先摸出一個球,記下編號,放回后乙再摸一個球,記下編號,如果兩個編號的和為偶數(shù)算甲贏,否則算乙贏.
(Ⅰ)求甲贏且編號和為6的事件發(fā)生的概率;
(Ⅱ)這種游戲規(guī)則公平嗎?試說明理由.
分析:(1)設(shè)“兩個編號和為6”為事件A,則用列舉法求得事件A包含的基本事件共5個,又甲、乙兩人取出的數(shù)字共有5×5=25(個)等可能的結(jié)果,由此求得P(A)的值.
(2)設(shè)甲勝為事件B,乙勝為事件C,則甲勝即兩編號和為偶數(shù),用列舉法求得所包含的基本事件數(shù)有13個,可得甲勝的概率,乙勝的概率.由于甲勝的概率和乙勝的概率不相等,可得這種游戲規(guī)則是不公平的.
解答:解:(1)設(shè)“兩個編號和為6”為事件A,則事件A包含的基本事件為(1,5),(2,4),(3,3),(4,2),(5,1)共5個,
又甲、乙兩人取出的數(shù)字共有5×5=25(個)等可能的結(jié)果,
P(A)=
5
25
=
1
5

(2)設(shè)甲勝為事件B,乙勝為事件C,則甲勝即兩編號和為偶數(shù)所包含的基本事件數(shù)有13個:(1,1),(1,3),(1,5),(2,2),(2,4),(3,1),(3,3),(3,5),(4,2),(4,4),(5,1),(5,3),(5,5).
所以甲勝的概率P(B)=
13
25
,乙勝的概率P(C)=1-
13
25
=
12
25
>P(B),
所以這種游戲規(guī)則是不公平的.
點評:本題考主要查古典概型問題,可以列舉出試驗發(fā)生包含的事件和滿足條件的事件,列舉法,是解決古典概型問題的一種重要的解題方法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

從一副撲克牌的紅桃花色中取5張牌,點數(shù)分別為1,2,3,4,5.甲、乙兩人玩一種游戲:甲先取一張牌,記下點數(shù),放回后乙再取一張牌,記下點數(shù).如果兩個點數(shù)的和為偶數(shù)就算甲勝,否則算乙勝.
(1)求甲勝且點數(shù)的和為6的事件發(fā)生的概率;
(2)這種游戲規(guī)則公平嗎?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

口袋中有質(zhì)地、大小完全相同的5個球,編號分別為1,2,3,4,5,甲、乙兩人玩一種游戲:甲先摸出一個球,記下編號,放回后乙再摸一個球,記下編號,如果兩個編號的和為偶數(shù)算甲贏,否則算乙贏.
(1)甲、乙按以上規(guī)則各摸一個球,求事件“甲贏且編號的和為6”發(fā)生的概率;
(2)這種游戲規(guī)則公平嗎?試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

口袋中有質(zhì)地、大小完全相同的5個球,編號分別為1,2,3,4,5,甲、乙兩人玩一種游戲:甲先摸出一個球,記下編號為a,放回后乙再摸一個球,記下編號為b.
(1)甲、乙按以上規(guī)則各換一個球,求點(a,b)落在直線a+b=6上的概率;
(2)若點(a,b)落在圓x2+y2=12內(nèi).則甲贏,否則算乙贏,這個游戲規(guī)則公平嗎?試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

口袋中有質(zhì)地、大小完全相同的5個球,編號分別為1、2、3、4、5,甲、乙兩人玩一種游戲:甲先摸出一個球,記下編號,放回后乙再摸一個球,記下編號,如果兩個編號的和為偶數(shù)算甲贏,否則算乙贏.
(1)求兩個編號的和為6的概率;
(2)求甲贏的事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在一個袋子中裝有分別標注數(shù)字1,2,3,4,5的5個小球,這些小球除去標注的數(shù)字外完全相同.甲、乙兩人玩一種游戲,甲先摸出一個球,記下球上的數(shù)字后放回,乙再摸出一個小球,記下球上的數(shù)字,如果兩個數(shù)字之和為偶數(shù)則甲勝,否則為乙勝.
(1)求兩數(shù)字之和為6的概率;
(2)這種游戲規(guī)則公平嗎?試說明理由.

查看答案和解析>>

同步練習(xí)冊答案