已知.
(1)當時,求曲線在點處的切線方程;
(2)若處有極值,求的單調(diào)遞增區(qū)間;
(3)是否存在實數(shù),使在區(qū)間的最小值是3,若存在,求出的值;若不存在,說明理由.
(1);(2);(3).

試題分析:(1)考查了導數(shù)的幾何意義,先求出切線的斜率,再用點斜式寫方程;(2)由求得,得結(jié)合函數(shù)的定義域求解即可;(3)首先假設(shè)存在實數(shù)滿足題意,分三種情況研究函數(shù)的單調(diào)性尋找其最小值,是對函數(shù)單調(diào)性的考查.
試題解析:(1)由已知得的定義域為,
因為,所以時,,所以,
因為,所以                       2分
所以曲線在點處的切線方程為
.                          4分
(2)因為處有極值,所以
由(1)知所以
經(jīng)檢驗,處有極值.                         6分
所以解得;
因為的定義域為,所以的解集為,
的單調(diào)遞增區(qū)間為.                         8分
(3)假設(shè)存在實數(shù)a,使有最小值3,
①當時,因為
所以上單調(diào)遞減,
,解得(舍去)                   10分
②當上單調(diào)遞減,在上單調(diào)遞增,
,滿足條件.                  12分
③當,
所以 上單調(diào)遞減,,
解得,舍去.
綜上,存在實數(shù),使得當有最小值3.             14分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)函數(shù)
解不等式;(4分)
事實上:對于成立,當且僅當時取等號.由此結(jié)論證明:.(6分)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù).
(1)若函數(shù)處取得極值,且函數(shù)只有一個零點,求的取值范圍.
(2)若函數(shù)在區(qū)間上不是單調(diào)函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),,且在點(1,)處的切線方程為
(1)求的解析式;
(2)求函數(shù)的單調(diào)遞增區(qū)間;
(3)設(shè)函數(shù),若方程有且僅有四個解,求實數(shù)a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)函數(shù)
(1)當時,求曲線處的切線方程;
(2)當時,求函數(shù)的單調(diào)區(qū)間;
(3)在(2)的條件下,設(shè)函數(shù),若對于[1,2],[0,1],使成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

曲線在點處的切線方程為                     .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)的圖像在點處的切線的傾斜角為(  )
A.B.0C.D.1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

由曲線f(x)=軸及直線圍成的圖形面積為,則的值為              .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

曲線在點處的切線的斜率為
A.B.C.D.

查看答案和解析>>

同步練習冊答案