【題目】直線l過P(1,2),且A(2,3),B(4,﹣5)到l的距離相等,則直線l的方程是( )
A.4x+y﹣6=0
B.x+4y﹣6=0
C.3x+2y﹣7=0或4x+y﹣6=0
D.2x+3y﹣7=0或x+4y﹣6=0
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】動點P滿足 + =2
(1)求動點P的軌跡F1 , F2的方程;
(2)設(shè)直線l與曲線C交于A,B兩點,坐標(biāo)原點O到直線l的距離為 ,求△OAB面 積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著資本市場的強(qiáng)勢進(jìn)入,互聯(lián)網(wǎng)共享單車“忽如一夜春風(fēng)來”,遍布了一二線城市的大街小巷.為了解共享單車在市的使用情況,某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中抽取了200人進(jìn)行抽樣分析,得到表格:(單位:人)
經(jīng)常使用 | 偶爾或不用 | 合計 | |
30歲及以下 | 70 | 30 | 100 |
30歲以上 | 60 | 40 | 100 |
合計 | 130 | 70 | 200 |
(1)根據(jù)以上數(shù)據(jù),能否在犯錯誤的概率不超過0.15的前提下認(rèn)為市使用共享單車情況與年齡有關(guān)?
(2)現(xiàn)從所抽取的30歲以上的網(wǎng)友中利用分層抽樣的方法再抽取5人.
(i)分別求這5人中經(jīng)常使用、偶爾或不用共享單車的人數(shù);
(ii)從這5人中,再隨機(jī)選出2人贈送一件禮品,求選出的2人中至少有1人經(jīng)常使用共享單車的概率.
參考公式: ,其中.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax+x2﹣xlna(a>0,a≠1).
(Ⅰ)當(dāng)a>1時,求證:函數(shù)f(x)在(0,+∞)上單調(diào)遞增;
(Ⅱ)若函數(shù)y=|f(x)﹣t|﹣1有三個零點,求t的值;
(Ⅲ)若存在x1 , x2∈[﹣1,1],使得|f(x1)﹣f(x2)|≥e﹣1,試求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在處有極值10.
(1)求實數(shù)的值;
(2)設(shè),討論函數(shù)在區(qū)間上的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場預(yù)計全年分批購入每臺價值2000元的電視機(jī)共3600臺,每批購入的臺數(shù)相同,且每批均須付運(yùn)費(fèi)400元,儲存購入的電視機(jī)全年所付保管費(fèi)與每批購入電視機(jī)的總價值(不含運(yùn)費(fèi))成正比.若每批購入400臺,則全年需用去運(yùn)費(fèi)和保管費(fèi)43600元.現(xiàn)在全年只有24000元可用于支付運(yùn)費(fèi)和保管費(fèi),請問能否恰當(dāng)安排每批進(jìn)貨的數(shù)量,使這24000元的資金夠用?寫出你的結(jié)論,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個函數(shù)中,在(0,1)上為增函數(shù)的是( )
A.y=﹣log2x
B.y=sinx
C.
D.y=arccosx
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)= ﹣2x+ln(x+1)(m∈R).
(Ⅰ)判斷x=1能否為函數(shù)f(x)的極值點,并說明理由;
(Ⅱ)若存在m∈[﹣4,﹣1),使得定義在[1,t]上的函數(shù)g(x)=f(x)﹣ln(x+1)+x3在x=1處取得最大值,求實數(shù)t的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com