已知在四棱錐中,底面是矩形,平面,,,分別是的中點(diǎn).
(1)求證:平面;
(2)求二面角的余弦值.
(1)證明過(guò)程詳見(jiàn)解析;(2).
解析試題分析:本題主要以四棱錐為幾何背景,考查線(xiàn)面平行的判定和二面角的求法,可以運(yùn)用傳統(tǒng)幾何法,也可以用空間向量方法求解,突出考查空間想象能力和計(jì)算能力.第一問(wèn),利用線(xiàn)面平行的判定定理,先找出面內(nèi)的一條線(xiàn),利用平行四邊形證明,從而證明線(xiàn)面平行;第二問(wèn),用向量法解題,先建立直角坐標(biāo)系,求出2個(gè)平面的法向量,再求夾角.
試題解析: (1)證明:取的中點(diǎn),連結(jié).
∴,且,
又,∴.
又是的中點(diǎn),且,
∴,∴四邊形是平行四邊形.
∴.
又平面,平面.
∴平面.(6分)
(2)解:以為原點(diǎn),如圖建立直角坐標(biāo)系,則,,,,,,.
設(shè)平面的法向量為,,.
則可得,令,則.
易得平面的法向量可為,
;
如圖,易知二面角的余弦值等于,即為. (12分)
考點(diǎn):1.線(xiàn)面平行的判定定理;2.向量法求二面角.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四邊形ABCD為平行四邊形,四邊形ADEF是正方形,且BD⊥平面CDE,H是BE的中點(diǎn),G是AE,DF的交點(diǎn).
(1)求證:GH∥平面CDE;
(2)求證:面ADEF⊥面ABCD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四棱錐中,是正三角形,四邊形是矩形,且平面平面,,.
(Ⅰ)若點(diǎn)是的中點(diǎn),求證:平面;
(II)試問(wèn)點(diǎn)在線(xiàn)段上什么位置時(shí),二面角的余弦值為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四棱錐中,四邊形為矩形,為等腰三角形,,平面 平面,且,分別為和的中點(diǎn).
(Ⅰ)證明:平面;
(Ⅱ)證明:平面平面;
(Ⅲ)求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐中,底面ABCD是正方形,側(cè)棱底面ABCD,,E是PC的中點(diǎn).
(Ⅰ)證明 平面EDB;
(Ⅱ)求EB與底面ABCD所成的角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐A-BCDE中,側(cè)面∆ADE是等邊三角形,底面BCDE是等腰梯形,且CD∥BE,DE=2,CD=4, ,M是DE的中點(diǎn),F(xiàn)是AC的中點(diǎn),且AC=4,
求證:(1)平面ADE⊥平面BCD;
(2)FB∥平面ADE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四棱錐的底面是直角梯形,,,和是兩個(gè)邊長(zhǎng)為的正三角形,,為的中點(diǎn),為的中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)求證:平面;
(Ⅲ)求直線(xiàn)與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐中,側(cè)面底面,,為中點(diǎn),底面是直角梯形,,,,.
(1) 求證:平面;
(2) 求證:平面平面;
(3) 設(shè)為棱上一點(diǎn),,試確定的值使得二面角為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖已知:菱形所在平面與直角梯形ABCD所在平面互相垂直,,點(diǎn)分別是線(xiàn)段的中點(diǎn).
(1)求證:平面平面;
(2)試問(wèn)在線(xiàn)段上是否存在點(diǎn),使得平面,若存在,求的長(zhǎng)并證明;若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com