如圖,在四棱錐中,底面ABCD是正方形,側(cè)棱底面ABCD,,E是PC的中點(diǎn).
(Ⅰ)證明 平面EDB;
(Ⅱ)求EB與底面ABCD所成的角的正切值.
(Ⅰ)見解析;(Ⅱ).
解析試題分析:(Ⅰ)令A(yù)C、BD交于點(diǎn)O,連接OE,證明OE∥AP,即可證明AP∥面BDE;(Ⅱ)先找到直線與平面所成的角,令F是CD中點(diǎn),又E是PC中點(diǎn),連結(jié)EF,BF,可以證明EF⊥面ABCD,故∠EBF為面BE與面ABCD所成的角,在Rt⊿BEF中求出其正切值.
試題解析:(Ⅰ)令A(yù)C、BD交于點(diǎn)O,連接OE,∵O是AC中點(diǎn),又E是PC中點(diǎn)
∴ OE∥AP 3分
又OE面BDE,AP面BDE 5分
∴AP∥面BDE 6分
(Ⅱ)令F是CD中點(diǎn),又E是PC中點(diǎn),連結(jié)EF,BF
∴EF∥PD,又PD⊥面ABCD
∴EF⊥面ABCD 8分
∴∠EBF為面BE與面ABCD所成的角.
令PD=CD=2a
則CD="EF=a," BF= 10分
在Rt⊿BEF中,
故BE與面ABCD所成角的正切是. 12分
考點(diǎn):線面平行的判定、直線與平面所成的角、勾股定理.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,是邊長為3的正方形,,,與平面所成的角為.
(1)求二面角的的余弦值;
(2)設(shè)點(diǎn)是線段上一動(dòng)點(diǎn),試確定的位置,使得,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,平面,四邊形是矩形,,M,N分別是AB,PC的中點(diǎn),
(1)求平面和平面所成二面角的大小,
(2)求證:平面
(3)當(dāng)的長度變化時(shí),求異面直線PC與AD所成角的可能范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖示,在底面為直角梯形的四棱椎P ABCD中,AD//BC,ÐABC= 900, PA^平面ABCD,PA= 4,AD= 2,AB=2,BC = 6.
(1)求證:BD^平面PAC ;
(2)求二面角A—PC—D的正切值;
(3)求點(diǎn)D到平面PBC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在邊長為的正方形ABCD中,E、F分別為BC、CD的中點(diǎn),M、N分別為AB、CF的中點(diǎn),現(xiàn)沿AE、AF、EF折疊,使B、C、D三點(diǎn)重合,重合后的點(diǎn)記為,構(gòu)成一個(gè)三棱錐.
(1)請(qǐng)判斷與平面的位置關(guān)系,并給出證明;
(2)證明平面;
(3)求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com