【題目】我們可從這個商標中抽象出一個如圖靠背而坐的兩條優(yōu)美的曲線,下列函數(shù)中大致可“完美”局部表達這對曲線的函數(shù)是( )
A.B.
C.D.
【答案】D
【解析】
由圖象可知,函數(shù)為偶函數(shù),且在右邊附近的函數(shù)值為正,然后逐項分析各選項中函數(shù)的奇偶性及其在右邊附近的函數(shù)值符號,即可得出合適的選項.
由圖象可知,函數(shù)為偶函數(shù),且在右邊附近的函數(shù)值為正.
對于A選項,令,得,解得,函數(shù)的定義域為,
,該函數(shù)為偶函數(shù),
當時,,則,且,此時,
不合乎題意,A選項錯誤;
對于B選項,函數(shù)的定義域為,
,該函數(shù)為奇函數(shù),不合乎題意,B選項錯誤;
對于C選項,的定義域為,
,該函數(shù)為奇函數(shù),不合乎題意,C選項錯誤;
對于D選項,函數(shù)的定義域為,
,該函數(shù)為偶函數(shù),
當時,,則,且,則,
合乎題意,D選項正確.
故選:D.
科目:高中數(shù)學 來源: 題型:
【題目】給出兩塊相同的正三角形鐵皮(如圖1,圖2),
(1)要求用其中一塊剪拼成一個三棱錐模型,另一塊剪拼成一個正三棱柱模型,使它們的全面積都與原三角形的面積相等,
①請設計一種剪拼方法,分別用虛線標示在圖1、圖2中,并作簡要說明;
②試比較你剪拼的正三棱錐與正三棱柱的體積的大小
(2)設正三角形鐵皮的邊長為,將正三角形鐵皮的三個角切去三個全等的四邊形,再把它的邊沿虛線折起(如圖3),做成一個無蓋的正三角形底鐵皮箱,當箱底邊長為多少時,箱子容積最大?最大容積是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】橢圓:的左、右焦點分別是,,離心率為,左、右頂點分別為,.過且垂直于軸的直線被橢圓截得的線段長為1.
(1)求橢圓的標準方程;
(2)經(jīng)過點的直線與橢圓相交于不同的兩點、(不與點、重合),直線與直線相交于點,求證:、、三點共線.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“地攤經(jīng)濟”是李克強總理在本屆政府工作報告中向全國人民發(fā)出的口號,某生產(chǎn)企業(yè)積極響應號召,大力研發(fā)新產(chǎn)品,為了對新研發(fā)的一批產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到一組銷售數(shù)據(jù)(,2,3,4,5,6),如表所示:
試銷單價x(元) | 4 | 5 | 6 | 7 | 8 | 9 |
產(chǎn)品銷量y(件) | q | 84 | 83 | 80 | 75 | 68 |
已知,,
(1)試求q,若變量x,y具有線性相關關系,求產(chǎn)品銷量y(件)關于試銷單價x(元)的線性回歸方程;
(2)用表示用(1)中所求的線性回歸方程得到的與對應的產(chǎn)品銷量的估計值.當銷售數(shù)據(jù)對應的殘差的絕對值時,則將銷售數(shù)據(jù)稱為一個“好數(shù)據(jù)”.現(xiàn)從6個銷售數(shù)據(jù)中任取3個,求“好數(shù)據(jù)”個數(shù)的分布列和數(shù)學期望.
(參考公式:線性回歸方程中,的最小二乘估計分別為,)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),下列結(jié)論中正確的序號是__________.
①的圖象關于點中心對稱,
②的圖象關于對稱,
③的最大值為,
④既是奇函數(shù),又是周期函數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù),,
(1)求曲線過原點的切線方程;
(2)設,若函數(shù)的導函數(shù)存在兩個不同的零點,,求實數(shù)的范圍:
(3)在(2)的條件下證明:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設f(x)=|lnx|,若函數(shù)g(x)=f(x)-ax在區(qū)間(0,4)上有三個零點,則實數(shù)a的取值范圍是( )
A. (0,)B. (,e)C. (,)D. (0,)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】農(nóng)歷五月初五是端午節(jié),民間有吃粽子的習慣,粽子又稱粽籺,古稱“角黍”,平行四邊形形狀的紙片是由六個邊長為的正三角形構成的,將它沿虛線折起來,可以得到如圖所示粽子形狀的六面體,則該六面體的體積為______;若該六面體內(nèi)有一球,則該球表面積的最大值為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com