分析 (Ⅰ)由sinα的值及α的范圍,利用同角三角函數(shù)間的基本關(guān)系求出cosα的值,再由正弦函數(shù)的和差化積公式計(jì)算得答案;
(Ⅱ)由sinα,cosα的值求出tanα的值,然后代入正切函數(shù)的二倍角公式計(jì)算得答案.
解答 解:(Ⅰ)∵sinα=$\frac{4}{5}$,α∈($\frac{π}{2}$,π),
∴$cosα=-\sqrt{1-si{n}^{2}α}=-\sqrt{1-\frac{16}{25}}=-\frac{3}{5}$.
∴sin(α-$\frac{π}{4}$)=$sinαcos\frac{π}{4}-cosαsin\frac{π}{4}$
=$\frac{4}{5}×\frac{\sqrt{2}}{2}-(-\frac{3}{5})×\frac{\sqrt{2}}{2}=\frac{7\sqrt{2}}{10}$;
(Ⅱ)∵$tanα=\frac{sinα}{cosα}=-\frac{4}{3}$,
∴tan2α=$\frac{2tanα}{1-ta{n}^{2}α}=\frac{2×(-\frac{4}{3})}{1-(-\frac{4}{3})^{2}}=\frac{24}{7}$.
點(diǎn)評 本題考查了三角函數(shù)的化簡求值,考查了同角三角函數(shù)間的基本關(guān)系以及二倍角公式的應(yīng)用,是基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 2$\sqrt{3}$ | C. | 4 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=|x-1| | B. | y=log2x | C. | y=(x+1)2 | D. | y=($\frac{1}{2}$)x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x=-$\frac{π}{6}$ | B. | x=$\frac{π}{12}$ | C. | x=$\frac{π}{6}$ | D. | x=$\frac{π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com