13.設x,y,z為正實數(shù),且x+y+z=3.求證:$\frac{x^2}{{x+\sqrt{yz}}}+\frac{y^2}{{y+\sqrt{zx}}}+\frac{z^2}{{z+\sqrt{xy}}}≥\frac{3}{2}$.

分析 根據題意,由柯西不等式可得(x+y+z+$\sqrt{yz}$+$\sqrt{zx}$+$\sqrt{xy}$)($\frac{x^2}{{x+\sqrt{yz}}}+\frac{y^2}{{y+\sqrt{zx}}}+\frac{z^2}{{z+\sqrt{xy}}}$)≥(x+y+z)2=9,進而基本不等式分析可得$\sqrt{yz}$+$\sqrt{zx}$+$\sqrt{xy}$≤x+y+z=3,進而可得x+y+z+$\sqrt{yz}$+$\sqrt{zx}$+$\sqrt{xy}$≤6,將其代入(x+y+z+$\sqrt{yz}$+$\sqrt{zx}$+$\sqrt{xy}$)($\frac{x^2}{{x+\sqrt{yz}}}+\frac{y^2}{{y+\sqrt{zx}}}+\frac{z^2}{{z+\sqrt{xy}}}$)≥9中,原不等式即可得到證明.

解答 證明:根據題意,x,y,z為正實數(shù),由柯西不等式可得:
(x+y+z+$\sqrt{yz}$+$\sqrt{zx}$+$\sqrt{xy}$)($\frac{x^2}{{x+\sqrt{yz}}}+\frac{y^2}{{y+\sqrt{zx}}}+\frac{z^2}{{z+\sqrt{xy}}}$)≥(x+y+z)2=9,
即$\frac{x^2}{{x+\sqrt{yz}}}+\frac{y^2}{{y+\sqrt{zx}}}+\frac{z^2}{{z+\sqrt{xy}}}$≥$\frac{9}{x+y+z+\sqrt{yz}+\sqrt{zx}+\sqrt{xy}}$,
而x+y+z=3且x+y≥2$\sqrt{xy}$,x+z≥2$\sqrt{xz}$,z+y≥2$\sqrt{zy}$,
分析可得$\sqrt{yz}$+$\sqrt{zx}$+$\sqrt{xy}$≤x+y+z=3,
又由x+y+z=3,
則x+y+z+$\sqrt{yz}$+$\sqrt{zx}$+$\sqrt{xy}$≤6,
故$\frac{x^2}{{x+\sqrt{yz}}}+\frac{y^2}{{y+\sqrt{zx}}}+\frac{z^2}{{z+\sqrt{xy}}}$≥$\frac{9}{x+y+z+\sqrt{yz}+\sqrt{zx}+\sqrt{xy}}$≥$\frac{9}{6}$=$\frac{3}{2}$;
故可證:$\frac{x^2}{{x+\sqrt{yz}}}+\frac{y^2}{{y+\sqrt{zx}}}+\frac{z^2}{{z+\sqrt{xy}}}$≥$\frac{3}{2}$.

點評 本題主要考查柯西不等式的應用,關鍵在于對左式的配湊變形,使其滿足柯西不等式的條件.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

16.已知sinα=$\frac{4}{5}$,α∈($\frac{π}{2}$,π)
(Ⅰ)求sin(α-$\frac{π}{4}$)的值;
(Ⅱ)求tan2α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.(1)已知函數(shù)f(x)=$\frac{x(1-{x}^{2})}{{x}^{2}+1}$,x∈[$\frac{1}{2}$,1],求f(x)的最大值.
(2)已知函數(shù)g(x)=$\frac{ax+b}{{x}^{2}+c}$是定義在R上的奇函數(shù),且當x=1時取得極大值1.
①求g(x)的表達式;
②若x1=$\frac{1}{2}$,xn+1=g(xn),n∈N,求證:$\frac{({x}_{2}-{x}_{1})^{2}}{{x}_{1}{x}_{2}}$+$\frac{({x}_{3}-{x}_{2})^{2}}{{x}_{3}{x}_{2}}$+…+$\frac{({x}_{n+1}-{x}_{n})^{2}}{{x}_{n}{x}_{n+1}}$≤10.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.某幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.3π+4B.4π+2C.$\frac{9π}{2}$+4D.$\frac{11π}{2}$+4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.設函數(shù)f(x)=ax2+2ax-ln(x+1),其中a∈R.
(1)討論f(x)的單調性;
(2)若f(x)+e-a>$\frac{1}{x+1}$在區(qū)間(0,+∞)內恒成立(e為自然對數(shù)的底數(shù)),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.在△ABC中,若$|{\overrightarrow{AB}+\overrightarrow{AC}}|=|{\overrightarrow{AB}-\overrightarrow{AC}}|$,則△ABC的形狀是(  )
A.等腰三角形B.直角三角形C.等邊三角形D.不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知$\overrightarrow{e_1},\overrightarrow{e_2}$是平面上的一組基底,
(1)已知$\overrightarrow{AB}=2\overrightarrow{e_1}+\overrightarrow{e_2}$,$\overrightarrow{BE}=-\overrightarrow{e_1}+λ\overrightarrow{e_2}$,$\overrightarrow{EC}=-2\overrightarrow{e_1}+\overrightarrow{e_2}$,且A,E,C三點共線,求實數(shù)λ的值;
(2)若$\overrightarrow{e_1},\overrightarrow{e_2}$是夾角為60°的單位向量,$\overrightarrow a=\overrightarrow{e_1}+λ\overrightarrow{e_2}$,$\overrightarrow b=-2λ\overrightarrow{e_1}-\overrightarrow{e_2}$,當-3≤λ≤5時,求$\overrightarrow a•\overrightarrow b$的最大值,最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知集合A={x|(x-2)(x-3a-2)<0},B={x|(x-1)(x-a2-2)<0},若a>0,試問:
(1)當a=1時,求A∩B;
(2)命題p:x∈A,命題q:x∈B,若q是p的必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.若命題“?x∈(-1,1],2x>a”是真命題,則a的取值范圍是( 。
A.$(-∞,\frac{1}{2}]$B.$(-∞,\frac{1}{2})$C.(-∞,2]D.(-∞,2)

查看答案和解析>>

同步練習冊答案