【題目】在平面直角坐標(biāo)系中,點(diǎn)到兩點(diǎn)、的距離之和等于,設(shè)點(diǎn)的軌跡為,斜率為的直線過點(diǎn),且與軌跡交于、兩點(diǎn).
(1)寫出軌跡的方程;
(2)如果,求的值;
(3)是否存在直線,使得在直線上存在點(diǎn),滿足為等邊三角形?若存在,求出直線的方程;若不存在,說明理由.
【答案】(1);(2);(3)存在直線:,使得在直線上存在點(diǎn),滿足為等邊三角形;
【解析】
(1)根據(jù)點(diǎn)到兩點(diǎn)、的距離之和等于,且,可知軌跡為橢圓,由,求得,從而可得橢圓方程;
(2)聯(lián)立直線與橢圓,根據(jù)弦長公式求出弦長與已知弦長相等,可求出直線斜率;
(3) 將為等邊三角形,轉(zhuǎn)化為且,利用(2)的弦長以及兩點(diǎn)間的距離公式可求得答案.
(1) 因?yàn)辄c(diǎn)到兩點(diǎn)、的距離之和等于,且,
所以點(diǎn)的軌跡是,以、為焦點(diǎn)的橢圓,且,
所以,
所以軌跡的方程為:.
(2) 直線的方程為:,將其代入到,
整理得,
設(shè),
則,,
所以
,
所以,即,所以.
(3)假設(shè)存在點(diǎn)滿足題意,
設(shè)的中點(diǎn)為,
由(1)知,
, ,
因?yàn)?/span>為等邊三角形,所以且,
所以, ,
所以,化簡得,所以,
所以存在直線:,使得在直線上存在點(diǎn),滿足為等邊三角形
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若平面直角坐標(biāo)系內(nèi)兩點(diǎn),滿足條件:①點(diǎn),都在函數(shù)的圖像上;②點(diǎn),關(guān)于原點(diǎn)對稱.則稱是函數(shù)的一個(gè)“伙伴點(diǎn)組”(點(diǎn)組與看作同一個(gè)“伙伴點(diǎn)組”).已知函數(shù)有兩個(gè)“伙伴點(diǎn)組”,則實(shí)數(shù)的取值范圍是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,橢圓:的離心率為,直線與交于,兩點(diǎn),長度的最大值為4.
(1)求的方程;
(2)直線與軸的交點(diǎn)為,當(dāng)直線變化(不與軸重合)時(shí),若,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)有兩個(gè)零點(diǎn)、,,則下面說法不正確的是( )
A.B.
C.D.有極小值點(diǎn),且
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的上下兩個(gè)焦點(diǎn)分別為,過點(diǎn)與軸垂直的直線交橢圓于兩點(diǎn),的面積為,橢圓的長軸長是短軸長的倍.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知為坐標(biāo)原點(diǎn),直線與軸交于點(diǎn),與橢園交于兩個(gè)不同的點(diǎn),若存在實(shí)數(shù),使得,求的取值范圍,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電動汽車“行車數(shù)據(jù)”的兩次記錄如下表:
記錄時(shí)間 | 累計(jì)里程 (單位:公里) | 平均耗電量(單位:公里) | 剩余續(xù)航里程 (單位:公里) |
2019年1月1日 | 4000 | 0.125 | 280 |
2019年1月2日 | 4100 | 0.126 | 146 |
(注:累計(jì)里程指汽車從出廠開始累計(jì)行駛的路程,累計(jì)耗電量指汽車從出廠開始累計(jì)消耗的電量,平均耗電量=,剩余續(xù)航里程=,下面對該車在兩次記錄時(shí)間段內(nèi)行駛100公里的耗電量估計(jì)正確的是
A. 等于12.5B. 12.5到12.6之間
C. 等于12.6D. 大于12.6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知、是定義在實(shí)數(shù)集上的實(shí)值函數(shù),如果存在,使得對任何,都有,那么稱比高興,如果對任何,都存在,使得,那么稱比幸運(yùn),對于實(shí)數(shù)和上述函數(shù),定義.
(1)①,,判斷是否比高興?
②,,判斷是否比幸運(yùn)?
(2)判斷下列命題是否正確?并說明理由:
①如果比高興,比高興,那么比高興;
②如果比幸運(yùn),比幸運(yùn),那么比幸運(yùn);
(3)證明:對每個(gè)函數(shù),均存在函數(shù),使得對任何實(shí)數(shù),都比幸運(yùn),也比幸運(yùn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(a>0,a≠1).
(1)判斷并證明函數(shù)f(x)的奇偶性;
(2)若f(t2t1)+f(t2)<0,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為矩形,平面平面,,,,為中點(diǎn).
(Ⅰ)求證:∥平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在棱上是否存在點(diǎn),使得?若存在,求的值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com