【題目】如圖,在三棱錐C﹣PAB中,AB⊥BC,PB⊥BC,PA=PB=5,AB=6,BC=4,點M是PC的中點,點N在線段AB上,且MN⊥AB.
(1)求AN的長;
(2)求銳二面角P﹣NC﹣A的余弦值.
【答案】
(1)解:如圖,分別取AB,AC的中點O,Q,連接OP,OQ,
以O(shè)為原點,以O(shè)P為x軸,以O(shè)A為y軸,以O(shè)Q為z軸,
建立空間直角坐標系,
則由題意知:A(0,3,0),B(0,﹣3,0),
P(4,0,0),C(0,﹣3,4),
M(2,﹣ ,2),N(0,t,0).
= , =(0,6,0).
∵ ⊥ ,∴ = =0,解得t=﹣ ,
∴AN=3﹣ = .
(2)解:N ,∴ = , =(2,0,2),
設(shè)平面MNC的一個法向量為 =(x,y,z),
則 ,即 ,則取 =(﹣3,8,3),
平面ANC的一個法向量為 =(1,0,0),
cos = = =﹣ .
∴銳二面角P﹣NC﹣A的余弦值為 .
【解析】(1)如圖,分別取AB,AC的中點O,Q,連接OP,OQ,以O(shè)為原點,以O(shè)P為x軸,以O(shè)A為y軸,以O(shè)Q為z軸,建立空間直角坐標系,設(shè)N(0,t,0).由 ⊥ ,可得 =0,解得t,即可得出AN.(2)設(shè)平面MNC的一個法向量為 =(x,y,z),則 ,可得 ,平面ANC的一個法向量為 =(1,0,0),利用cos = 即可得出.
【考點精析】本題主要考查了棱錐的結(jié)構(gòu)特征的相關(guān)知識點,需要掌握側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】已知下列命題:
①命題:x∈(0,2),3x>x3的否定是:x∈(0,2),3x≤x3;
②若f(x)=2x﹣2﹣x , 則x∈R,f(﹣x)=﹣f(x);
③若f(x)=x+ ,則x0∈(0,+∞),f(x0)=1;
④等差數(shù)列{an}的前n項和為Sn , 若a4=3,則S7=21;
⑤在△ABC中,若A>B,則sinA>sinB.
其中真命題是 . (只填寫序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)f(x)= (x>0),計算觀察以下格式: f1(x)=f(x),f2(x)=f(f1(x)),f3(x)=f(f2(x)),f4(x)=f(f3(x)),…
根據(jù)以上事實得到當n∈N*時,fn(1)= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知一次函數(shù)f(x)=ax-2.
(1)當a=3時,解不等式|f(x)|<4;
(2)解關(guān)于x的不等式|f(x)|<4;
(3)若關(guān)于x的不等式|f(x)|≤3對任意x∈[0,1]恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】三國魏人劉徽,自撰《海島算經(jīng)》,專論測高望遠.其中有一題:今有望海島,立兩表齊,高三丈,前後相去千步,令後表與前表相直.從前表卻行一百二十三步,人目著地取望島峰,與表末參合.從後表卻行百二十七步,人目著地取望島峰,亦與表末參合.問島高幾何?譯文如下:要測量海島上一座山峰A的高度AH,立兩根高三丈的標桿BC和DE,前后兩桿相距BD=1000步,使后標桿桿腳D與前標桿桿腳B與山峰腳H在同一直線上,從前標桿桿腳B退行123步到F,人眼著地觀測到島峰,A、C、F三點共線,從后標桿桿腳D退行127步到G,人眼著地觀測到島峰,A、E、G三點也共線,則山峰的高度AH=( ) 步(古制:1步=6尺,1里=180丈=1800尺=300步)
A.1250
B.1255
C.1230
D.1200
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對某校高一年級學生參加社區(qū)服務(wù)次數(shù)進行統(tǒng)計,隨機抽取M名學生作為樣本,得到這M名學生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表和頻率分布直方圖如下:
分組 | 頻數(shù) | 頻率 |
[10,15) | 10 | 0.25 |
[15,20) | 25 | n |
[20,25) | m | p |
[25,30) | 2 | 0.05 |
合計 | M | 1 |
(1)求出表中M,p及圖中a的值;
(2)若該校高一學生有360人,試估計該校高一學生參加社區(qū)服務(wù)的次數(shù)在區(qū)間[15,20)內(nèi)的人數(shù);
(3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學生中任選2人,請列舉出所有基本事件,并求至多1人參加社區(qū)服務(wù)次數(shù)在區(qū)間[20,25)內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】[選修4-4:坐標系與參數(shù)方程]
在直角坐標系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),在以O(shè)為極點x軸的非負半軸為極軸建立的極坐標系中,曲線C的極坐標方程為ρ=2.
(1)求直線l的普通方程和曲線C的直角坐標方程;
(2)若點Q是曲線C上的動點,求點Q到直線l的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,小明想將短軸長為2,長軸長為4的一個半橢圓形紙片剪成等腰梯形ABDE,且梯形ABDE內(nèi)接于半橢圓,DE∥AB,AB為短軸,OC為長半軸
(1)求梯形ABDE上底邊DE與高OH長的關(guān)系式;
(2)若半橢圓上到H的距離最小的點恰好為C點,求底邊DE的取值范圍
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對某校高一年級學生參加社區(qū)服務(wù)次數(shù)進行統(tǒng)計,隨機抽取M名學生作為樣本,得到這M名學生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表和頻率分布直方圖如下:
分組 | 頻數(shù) | 頻率 |
[10,15) | 10 | 0.25 |
[15,20) | 25 | n |
[20,25) | m | p |
[25,30) | 2 | 0.05 |
合計 | M | 1 |
(1)求出表中M,p及圖中a的值;
(2)若該校高一學生有360人,試估計該校高一學生參加社區(qū)服務(wù)的次數(shù)在區(qū)間[15,20)內(nèi)的人數(shù);
(3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學生中任選2人,請列舉出所有基本事件,并求至多1人參加社區(qū)服務(wù)次數(shù)在區(qū)間[20,25)內(nèi)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com