【題目】已知函數(shù),其中

當(dāng)時(shí), 的零點(diǎn)為______;(將結(jié)果直接填寫(xiě)在橫線(xiàn)上)

當(dāng)時(shí),如果存在,使得,試求的取值范圍;

Ⅲ)如果對(duì)于任意,都有成立,試求的最大值.

【答案】零點(diǎn);(;(

【解析】試題分析:解一元二次方程可得零點(diǎn)根據(jù)a分類(lèi)討論:一次函數(shù)必存在負(fù)值,開(kāi)口向下的二次函數(shù)必存在負(fù)值,只需研究開(kāi)口向上的二次函數(shù)有負(fù)值的條件,即判別式大于零,解不等式可得的取值范圍;根據(jù)二次函數(shù)實(shí)根分布得關(guān)于a,b不等式,作出可行域,再根據(jù)線(xiàn)性規(guī)劃求的最大值.

試題解析:當(dāng)時(shí), ,所以

當(dāng)時(shí),滿(mǎn)足題意;當(dāng)時(shí),由 ,即綜上可得的取值范圍為

由題意得 ,作可行域如圖,則直線(xiàn) 過(guò)點(diǎn)A(1,1)時(shí)取最大值2的最大值為2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系,曲線(xiàn)C1的參數(shù)方程為 (α為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的正半軸為級(jí)軸,建立極坐標(biāo)系,曲線(xiàn)C2的極坐標(biāo)方程;

(1)求曲線(xiàn)C1的普通方程和曲線(xiàn)C2的直角坐標(biāo)方程;

(2)設(shè)P為曲線(xiàn)C1上的動(dòng)點(diǎn),求點(diǎn)P到曲線(xiàn)C2上的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)的焦點(diǎn)為,拋物線(xiàn)上存在一點(diǎn) 到焦點(diǎn)的距離等于

(1)求拋物線(xiàn)的方程;

(2)過(guò)點(diǎn)的直線(xiàn)與拋物線(xiàn)相交于,兩點(diǎn)(,兩點(diǎn)在軸上方),點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn)為,且,求的外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù), .

1求函數(shù)的單調(diào)區(qū)間;

2若不等式區(qū)間上恒成立,求實(shí)數(shù)的取值范圍;

3求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的右焦點(diǎn)為,右頂點(diǎn)為,離心離為,點(diǎn)滿(mǎn)足條件

Ⅰ)求的值.

Ⅱ)設(shè)過(guò)點(diǎn)的直線(xiàn)與橢圓相交于兩點(diǎn),記的面積分別為,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三角形ABC的外接圓的O半徑為,CD垂直于外接圓所在的平面,

(1)求證:平面 平面

(2)試問(wèn)線(xiàn)段上是否存在點(diǎn),使得直線(xiàn)與平面所成角的正弦值為?若存在,確定點(diǎn)的位置,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)是定義在D上的函數(shù),若對(duì)D中的任意兩數(shù)),恒有,則稱(chēng)為定義在D上的C函數(shù).

(1)試判斷函數(shù)是否為定義域上的C函數(shù),并說(shuō)明理由;

(2)若函數(shù)R上的奇函數(shù),試證明不是R上的C函數(shù);

(3)設(shè)是定義在D上的函數(shù),若對(duì)任何實(shí)數(shù)以及D中的任意兩數(shù)),恒有,則稱(chēng)為定義在D上的π函數(shù). 已知R上的π函數(shù),m是給定的正整數(shù),設(shè),,. 對(duì)于滿(mǎn)足條件的任意函數(shù),試求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列是首項(xiàng)與公比均為的等比數(shù)列(,且),數(shù)列滿(mǎn)足

1)求數(shù)列的前項(xiàng)和;

2)若對(duì)一切都有,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),設(shè)關(guān)于的方程個(gè)不同的實(shí)數(shù)解,則的所有可能的值為( )

A. 3 B. 1或3 C. 4或6 D. 3或4或6

查看答案和解析>>

同步練習(xí)冊(cè)答案