【題目】數(shù)列是首項(xiàng)與公比均為的等比數(shù)列(,且),數(shù)列滿足.
(1)求數(shù)列的前項(xiàng)和;
(2)若對一切都有,求的取值范圍.
【答案】(1);(2)或.
【解析】試題分析:(1)先求出數(shù)列的通項(xiàng)公式,從而可得,利用錯(cuò)位相減法求解即可;(2)由得,討論時(shí), 時(shí)兩種情況,分別分離參數(shù),求出的最值,即可求的取值范圍.
試題解析:(1)∵數(shù)列是首項(xiàng)為,公比為的等比數(shù)列.
∴.
從而,∴ .
設(shè),則,
∴ ,
∴,∴.
(2)由得.
①當(dāng)時(shí), ,可得,
∵, ,
∴對一切都成立,此時(shí)的解為;
②當(dāng)時(shí), ,可得,
∵, ,
∴對一切都成立時(shí).
由①,②可知,對一切都有的的取值范圍是或.
【易錯(cuò)點(diǎn)晴】本題主要考察等差數(shù)列的通項(xiàng)公式、等比數(shù)列的求和公式、“錯(cuò)位相減法”求數(shù)列的和,以及不等式恒成立問題,屬于難題. “錯(cuò)位相減法”求數(shù)列的和是重點(diǎn)也是難點(diǎn),利用“錯(cuò)位相減法”求數(shù)列的和應(yīng)注意以下幾點(diǎn):①掌握運(yùn)用“錯(cuò)位相減法”求數(shù)列的和的條件(一個(gè)等差數(shù)列與一個(gè)等比數(shù)列的積);②相減時(shí)注意最后一項(xiàng) 的符號;③求和時(shí)注意項(xiàng)數(shù)別出錯(cuò);④最后結(jié)果一定不能忘記等式兩邊同時(shí)除以.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】讀下列各題所給的程序,依據(jù)程序畫出程序框圖,并說明其功能:
(1)INPUT “x=”;x
IF x>1 OR x<-1 THEN
y=1
ELSE y=0
END IF
PRINE y
END
(2)INPUT “輸入三個(gè)正數(shù)a,b,c=”;a,b,c
IF a+b>c AND a+c>b AND b+c>a THEN
p=(a+b+c)/2
S=SQR(p*(p-a)*(p-b)*(p-c))
PRINT “三角形的面積S=”S
ELSE
PRINT “構(gòu)不成三角形”
END IF
END
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中, .
(Ⅰ)當(dāng)時(shí), 的零點(diǎn)為______;(將結(jié)果直接填寫在橫線上)
(Ⅱ)當(dāng)時(shí),如果存在,使得,試求的取值范圍;
(Ⅲ)如果對于任意,都有成立,試求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的對稱中心為原點(diǎn)O,焦點(diǎn)在x軸上,離心率為,且點(diǎn)在該橢圓上。
(I)求橢圓C的方程;
(II)過橢圓C的左焦點(diǎn)的直線l與橢圓C相交于兩點(diǎn),若的面積為,求圓心在原點(diǎn)O且與直線l相切的圓的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年“雙11”前夕,某市場機(jī)構(gòu)隨機(jī)對中國公民進(jìn)行問卷調(diào)查,用于調(diào)研“雙11”民眾購物意愿和購物預(yù)計(jì)支出狀況. 分類統(tǒng)計(jì)后,從有購物意愿的人中隨機(jī)抽取100人作為樣本,將他(她)們按照購物預(yù)計(jì)支出(單位:千元)分成8組: [0, 2),[2, 4),[4, 6),…,[14, 16],并繪制成如圖所示的頻率分布直方圖,其中,樣本中購物預(yù)計(jì)支出不低于1萬元的人數(shù)為a.
(Ⅰ) (i)求a的值,并估算這100人購物預(yù)計(jì)支出的平均值;
(ii)以樣本估計(jì)總體,在有購物意愿的人群中,若至少有65%的人購物預(yù)計(jì)支出不低于x千元,求x的最大值.
(Ⅱ) 如果參與本次問卷調(diào)查的總?cè)藬?shù)為t,問卷調(diào)查得到下列信息:
①參與問卷調(diào)查的男女人數(shù)之比為2:3;
②男士無購物意愿和有購物意愿的人數(shù)之比是1:3,女士無購物意愿和有購物意愿的人數(shù)之比為1:4;
③能以90%的把握認(rèn)為“雙11購物意愿與性別有關(guān)”,但不能以95%的把握認(rèn)為“雙11購物意愿與性別有關(guān)”.
根據(jù)以上數(shù)據(jù)信息,求t所有可能取值組成的集合M.
附: ,其中.
獨(dú)立檢驗(yàn)臨界值表:
0.100 | 0.050 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假定下述數(shù)據(jù)是甲、乙兩個(gè)供貨商的交貨天數(shù):
甲:10 9 10 10 11 11 9 11 10 10
乙:8 10 14 7 10 11 10 8 15 12
估計(jì)兩個(gè)供貨商的交貨情況,并問哪個(gè)供貨商交貨時(shí)間短一些,哪個(gè)供貨商交貨時(shí)間較具一致性與可靠性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,滿足Sn=2an-1.(n∈N*)
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}滿足bn=an,求數(shù)列{bn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖在棱錐中, 為矩形, 面, , 與面成角, 與面成角.
(1)在上是否存在一點(diǎn),使面,若存在確定點(diǎn)位置,若不存在,請說明理由;
(2)當(dāng)為中點(diǎn)時(shí),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn) ,圓: ,過的動直線與⊙交兩點(diǎn),線段中點(diǎn)為, 為坐標(biāo)原點(diǎn)。
(1)求點(diǎn)的軌跡方程;
(2)當(dāng)時(shí),求直線的方程以及△面積。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com