【題目】如圖,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,底面邊長為a,E是PC的中點(diǎn).
(1)求證:PA∥平面BDE;
(2)求證:平面PAC⊥平面BDE.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),是雙曲線C:的左,右焦點(diǎn),O是坐標(biāo)原點(diǎn)過作C的一條漸近線的垂線,垂足為P,若,則C的離心率為
A. B. 2 C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個盒子中裝有5張編號依次為1,2,3,4,5的卡片,這5張卡片除號碼外完全相同,現(xiàn)進(jìn)行有放回的連續(xù)抽取兩次,每次任意地取出一張卡片.
(1)求出所有可能結(jié)果數(shù),并列出所有可能結(jié)果;
(2)求事件“取出卡片的號碼之和不小于7”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為利于分層教學(xué),某學(xué)校根據(jù)學(xué)生的情況分成了A,B,C三類,經(jīng)過一段時間的學(xué)習(xí)后在三類學(xué)生中分別隨機(jī)抽取了1個學(xué)生的5次考試成緞,其統(tǒng)計表如下:
A類
第x次 | 1 | 2 | 3 | 4 | 4 |
分?jǐn)?shù)y(滿足150) | 145 | 83 | 95 | 72 | 110 |
,;
B類
第x次 | 1 | 2 | 3 | 4 | 4 |
分?jǐn)?shù)y(滿足150) | 85 | 93 | 90 | 76 | 101 |
,;
C類
第x次 | 1 | 2 | 3 | 4 | 4 |
分?jǐn)?shù)y(滿足150) | 85 | 92 | 101 | 100 | 112 |
,;
(1)經(jīng)計算己知A,B的相關(guān)系數(shù)分別為,.,請計算出C學(xué)生的的相關(guān)系數(shù),并通過數(shù)據(jù)的分析回答抽到的哪類學(xué)生學(xué)習(xí)成績最穩(wěn)定;(結(jié)果保留兩位有效數(shù)字,越大認(rèn)為成績越穩(wěn)定)
(2)利用(1)中成績最穩(wěn)定的學(xué)生的樣本數(shù)據(jù),已知線性回歸直線方程為,利用線性回歸直線方程預(yù)測該生第十次的成績.
附相關(guān)系數(shù),線性回歸直線方程,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形中,,,,四邊形是直角梯形,,,,平面平面.
(1)求證:平面;
(2)在線段上是否存在一點(diǎn),使得平面與平面所成的銳二面角的余弦值為,若存在,求出點(diǎn)的位置;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是奇函數(shù),
(1)求實(shí)數(shù)m的值;
(2)判斷函數(shù)的單調(diào)性并用定義法加以證明;
(3)若函數(shù)在上的最小值為,求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(多選題)如圖,設(shè)的內(nèi)角所對的邊分別為,若成等比數(shù)列,成等差數(shù)列,是外一點(diǎn),,下列說法中,正確的是( )
A.B.是等邊三角形
C.若四點(diǎn)共圓,則D.四邊形面積無最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).若曲線和曲線都過點(diǎn),且在點(diǎn)處有相同的切線.
(Ⅰ)求的值;
(Ⅱ)若時, ,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時,證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com