【題目】設(shè)各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,已知a11,且anSn+1an+1Snan+1λan,對一切nN*都成立.

1)當(dāng)λ1時(shí);

①求數(shù)列{an}的通項(xiàng)公式;

②若bn=(n+1an,求數(shù)列{bn}的前n項(xiàng)的和Tn;

2)是否存在實(shí)數(shù)λ,使數(shù)列{an}是等差數(shù)列如果存在,求出λ的值;若不存在,說明理由.

【答案】1)①an2n1Tnn2n2)存在;λ0

【解析】

1)化簡得到,根據(jù)累乘法計(jì)算得到Sn+1+12an+1,得到數(shù)列{an}是首項(xiàng)為1,公比為2的等比數(shù)列,得到答案,再利用錯(cuò)位相減法計(jì)算得到答案.

2)要使數(shù)列{an}是等差數(shù)列,必須有2a2a1+a3,解得λ0λ0,計(jì)算得到an1,得到答案.

1)①當(dāng)λ1時(shí),anSn+1an+1Snan+1an,則anSn+1+anan+1Sn+an+1

即(Sn+1+1an=(Sn+1an+1.

∵數(shù)列{an}的各項(xiàng)均為正數(shù),∴.

化簡,得Sn+1+12an+1,①,∴當(dāng)n≥2時(shí),Sn+12an,②

②﹣①,得an+12an

∵當(dāng)n1時(shí),a22,∴n1時(shí)上式也成立,

∴數(shù)列{an}是首項(xiàng)為1,公比為2的等比數(shù)列,即an2n1.

②由①知,bn=(n+1an=(n+12n1.

Tnb1+b2+…+bn21+321+…+n+12n1,

2Tn22+322+…+n2n1+n+12n

兩式相減,可得﹣Tn2+2+22+…+2n1﹣(n+12n2n+12n=﹣n2n.

Tnn2n.

2)由題意,令n1,得a2λ+1;令n2,得a3=(λ+12.

要使數(shù)列{an}是等差數(shù)列,必須有2a2a1+a3,解得λ0.

當(dāng)λ0時(shí),Sn+1an=(Sn+1an+1,且a2a11.

當(dāng)n≥2時(shí),Sn+1SnSn1)=(Sn+1)(Sn+1Sn),

整理,得Sn2+SnSn+1Sn1+Sn+1,即

從而,

化簡,得Sn+1Sn+1,即an+11.

綜上所述,可得an1,nN*.

λ0時(shí),數(shù)列{an}是等差數(shù)列.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平行四邊形中,,,是線段的中點(diǎn),沿翻折到,使得平面平面.

1)求證:平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《中國詩詞大會(huì)》是央視首檔全民參與的詩詞節(jié)目,節(jié)目以賞中華詩詞,尋文化基因,品生活之美為宗旨.每一期的比賽包含以下環(huán)節(jié):個(gè)人追逐賽、攻擂資格爭奪賽擂主爭霸賽,其中擂主爭霸賽攻擂資格爭奪賽獲勝者與上一場擂主進(jìn)行比拼.“擂主爭霸賽共有九道搶答題,搶到并答對者得一分,答錯(cuò)則對方得一分,率先獲得五分者即為該場擂主.在《中國詩詞大會(huì)》的某一期節(jié)目中,若進(jìn)行擂主爭霸賽的甲乙兩位選手每道搶答題得到一分的概率都是為0.5,則搶答完七道題后甲成為擂主的概率為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若關(guān)于的不等式恒成立,求的取值范圍;

2)當(dāng)時(shí),求證:

3)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線C的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)O為極,z軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

()求曲線C的普通方程和直線的直角坐標(biāo)方程;

()設(shè)點(diǎn).若直線與曲線C相交于A,B兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年全國掀起了垃圾分類的熱潮,垃圾分類已經(jīng)成為新時(shí)尚,同時(shí)帶動(dòng)了垃圾桶的銷售.某垃圾桶生產(chǎn)和銷售公司通過數(shù)據(jù)分析,得到如下規(guī)律:每月生產(chǎn)只垃圾桶的總成本由固定成本和生產(chǎn)成本組成,其中固定成本為100萬元,生產(chǎn)成本為.

1)寫出平均每只垃圾桶所需成本關(guān)于的函數(shù)解析式,并求該公司每月生產(chǎn)多少只垃圾桶時(shí),可使得平均每只所需成本費(fèi)用最少?

2)假設(shè)該類型垃圾桶產(chǎn)銷平衡(即生產(chǎn)的垃圾桶都能賣掉),每只垃圾桶的售價(jià)為元,滿足.若當(dāng)產(chǎn)量為15000只時(shí)利潤最大,此時(shí)每只售價(jià)為300元,試求的值.(利潤銷售收入成本費(fèi)用)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)

討論的單調(diào)區(qū)間;

當(dāng)時(shí),上的最小值為,求上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為調(diào)查某地區(qū)老人是否需要志愿者提供幫助,用簡單隨機(jī)抽樣方法從該地區(qū)調(diào)查了500位老年人,結(jié)果如下:

是否需要志愿 性別

需要

40

30

不需要

160

270

1)估計(jì)該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例;

2)能否有99%的把握認(rèn)為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān)?

3)根據(jù)(2)的結(jié)論,能否提供更好的調(diào)查方法來估計(jì)該地區(qū)老年人中,需要志愿幫助的老年人的比例?說明理由.

P

0.0

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某調(diào)查機(jī)構(gòu)對全國互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計(jì),得到整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結(jié)論中不正確的是(

注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.

A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上

B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的

C.互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營崗位的人數(shù)90后比80前多

D.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多

查看答案和解析>>

同步練習(xí)冊答案