(本題滿分16分)本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分6分.
已知橢圓
:
(
),其左、右焦點分別為
、
,且
、
、
成等比數(shù)列.
(1)求
的值.
(2)若橢圓
的上頂點、右頂點分別為
、
,求證:
.
(3)若
為橢圓
上的任意一點,是否存在過點
、
的直線
,使
與
軸的交點
滿足
?若存在,求直線
的斜率
;若不存在,請說明理由.
(1)由題設
及
,得
.(4分)
(2)由題設
,
,又
,得
,
,(8分)
于是
,故
.(10
分)
(3)由題設,顯然直線
垂直于
軸時不合題意,設直線
的方程為
,
得
,又
,及
,得點
的坐標為
,(12分)
因為點
在橢圓上,所以
,又
,得
,
,與
矛盾,故不存在滿足題意的直線
.(16分)
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)求一條漸近線方程是
,且過點
的雙曲線的標準方程,并求此雙曲線的離心率.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分13分)
已知橢圓
的短軸長為
,且與拋物線
有共同的焦點,橢圓
的左頂點為A,右頂點為
,點
是橢圓
上位于
軸上方的動點,直線
,
與直線
分別交于
兩點.
(I)求橢圓
的方程;
(Ⅱ)求線段
的長度的最小值;
(Ⅲ)在線段
的長度取得最小值時,橢圓
上是否存在一點
,使得
的面積為
,若存在求出點
的坐標,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)
橢圓
:
的離心率為
,長
軸端點與短軸端點間的距離為
。
(I)求橢圓
的方程;
(II)設過點
的直線
與橢圓
交于
兩點,
為坐標原點,若
為直角三角形,求直線
的斜率。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,已知橢圓的中心在坐標原點,焦點
F1,
F2在
x軸上,長軸
A1A2的長為4,左準線
l與
x軸的交點為
M,|
MA1|∶|
A1F1|=2∶1.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線
l1:
x=
m(|
m|>1),
P為
l1上的動點,使∠
F1PF2最大的點
P記為
Q,求點
Q的坐標(用
m表示).
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
在用二分法解方程
時,若初始區(qū)間為
,則下一個有解的區(qū)間是
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
到兩坐標軸的距離之和等于2的點的軌跡方程是 ( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知雙曲線
的右焦點為
,則該雙曲線的漸近線方程為
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知平面內(nèi)兩定點
,動點
滿足條件:
,設點
的軌跡是曲線
為坐標原點。
(I)求曲線
的方程;
(II)若直線
與曲線
相交于兩不同點
,求
的取值范圍;
(III)(文科做)設
兩點分別在直線
上,若
,記
分別為
兩點的橫坐標,求
的最小值。
(理科做)設
兩點分別在直線
上,若
,求
面積的最大值。
查看答案和解析>>