(本題滿分16分)本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分6分.
已知橢圓),其左、右焦點分別為、,且、、成等比數(shù)列.
(1)求的值.
(2)若橢圓的上頂點、右頂點分別為、,求證:
(3)若為橢圓上的任意一點,是否存在過點的直線,使軸的交點滿足?若存在,求直線的斜率;若不存在,請說明理由.
(1)由題設,得.(4分)
(2)由題設,又,得,,(8分)
于是,故.(10分)
(3)由題設,顯然直線垂直于軸時不合題意,設直線的方程為,
,又,及,得點的坐標為,(12分)
因為點在橢圓上,所以,又,得
,與矛盾,故不存在滿足題意的直線.(16分)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)求一條漸近線方程是,且過點的雙曲線的標準方程,并求此雙曲線的離心率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
已知橢圓的短軸長為,且與拋物線有共同的焦點,橢圓的左頂點為A,右頂點為,點是橢圓上位于軸上方的動點,直線,與直線分別交于兩點.
(I)求橢圓的方程;
(Ⅱ)求線段的長度的最小值;
(Ⅲ)在線段的長度取得最小值時,橢圓上是否存在一點,使得的面積為,若存在求出點的坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
橢圓的離心率為,長軸端點與短軸端點間的距離為。
(I)求橢圓的方程;
(II)設過點的直線與橢圓交于兩點,為坐標原點,若
為直角三角形,求直線的斜率。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知橢圓的中心在坐標原點,焦點F1F2x軸上,長軸A1A2的長為4,左準線lx軸的交點為M,|MA1|∶|A1F1|=2∶1.
(Ⅰ)求橢圓的方程;
  
(Ⅱ)若直線l1xm(|m|>1),Pl1上的動點,使∠F1PF2最大的點P記為Q,求點Q的坐標(用m表示).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在用二分法解方程時,若初始區(qū)間為,則下一個有解的區(qū)間是           

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

到兩坐標軸的距離之和等于2的點的軌跡方程是                        (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知雙曲線的右焦點為,則該雙曲線的漸近線方程為       

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知平面內(nèi)兩定點,動點滿足條件:,設點的軌跡是曲線為坐標原點。
(I)求曲線的方程;
(II)若直線與曲線相交于兩不同點,求的取值范圍;
(III)(文科做)設兩點分別在直線上,若,記 分別為兩點的橫坐標,求的最小值。
(理科做)設兩點分別在直線上,若,求面積的最大值。

查看答案和解析>>

同步練習冊答案