在中,角所對(duì)的邊分別為,已知,
(Ⅰ)求的大小;
(Ⅱ)若,求的取值范圍.
(Ⅰ);(Ⅱ).
解析試題分析:(Ⅰ) 利用正弦定理、結(jié)合角的范圍來(lái)求;(Ⅱ)利用余弦定理、邊角互換,然后利用基本不等式來(lái)求解.
試題解析:(Ⅰ)由條件結(jié)合正弦定理得,
從而,
∵,∴ 5分
(Ⅱ)法一:由已知:,
由余弦定理得:
(當(dāng)且僅當(dāng)時(shí)等號(hào)成立) ∴(,又,
∴,從而的取值范圍是 12分
法二:由正弦定理得:
∴,,
∵,∴,
即(當(dāng)且僅當(dāng)時(shí),等號(hào)成立) 從而的取值范圍是 12分
考點(diǎn):正弦定理、余弦定理以及基本不等式,考查分析問(wèn)題、解決問(wèn)題的能力
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知中,,,設(shè),并記
(1)求函數(shù)的解析式及其定義域;
(2)設(shè)函數(shù),若函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/5c/a/f3qlg1.png" style="vertical-align:middle;" />,試求正實(shí)數(shù)的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知,函數(shù).
(1)求的最值和單調(diào)遞減區(qū)間;
(2)已知在△ABC中,角A、B、C的對(duì)邊分別為,,求△ABC的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在中,,垂足為,且.
(Ⅰ)求的大小;
(Ⅱ)設(shè)為的中點(diǎn),已知的面積為15,求的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com