【題目】如圖,在三棱臺(tái) 中, , 分別是 , 的中點(diǎn), , 平面 ,且 .
(1)證明: 平面 ;
(2)若 , 為等邊三角形,求四棱錐 的體積.
【答案】
(1)解:設(shè) 與 相交于 ,連接 ,
由題意可知, , ,
所以四邊形 是平行四邊形,
從而 是 的中點(diǎn).
又 是 的中點(diǎn),
所以 .
又 平面 , 平面 ,
所以 平面
(2)解:易證 , 是三棱柱,
又因?yàn)? 平面 ,所以 是此三棱柱的高,
同理 也是三棱錐 的高.
因?yàn)? , 為等邊三角形,
所以 , , ,
又 ,
所以 .
【解析】本題考查線面平行的證明,考查四棱錐的體積的求法.直線與平面平行的判定定理的實(shí)質(zhì)是:對(duì)于平面外的一條直線,只需在平面內(nèi)找到一條直線和這條直線平行,就可判定這條直線必和這個(gè)平面平行.即由線線平行得到線面平行.柱體、錐體、臺(tái)體的體積公式:
V柱=sh,V錐=Sh.
【考點(diǎn)精析】本題主要考查了棱錐的結(jié)構(gòu)特征和棱臺(tái)的結(jié)構(gòu)特征的相關(guān)知識(shí)點(diǎn),需要掌握側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方;①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn)才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我們可以用隨機(jī)模擬的方法估計(jì) 的值,如圖程序框圖表示其基本步驟(函數(shù) 是產(chǎn)生隨機(jī)數(shù)的函數(shù),它能隨機(jī)產(chǎn)生 內(nèi)的任何一個(gè)實(shí)數(shù)).若輸出的結(jié)果為 ,則由此可估計(jì) 的近似值為( )
A.3.119
B.3.124
C.3.132
D.3.151
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】網(wǎng)店和實(shí)體店各有利弊,兩者的結(jié)合將在未來一段時(shí)期內(nèi),成為商業(yè)的一個(gè)主要發(fā)展方向.某品牌行車記錄儀支架銷售公司從 年 月起開展網(wǎng)絡(luò)銷售與實(shí)體店體驗(yàn)安裝結(jié)合的銷售模式.根據(jù)幾個(gè)月運(yùn)營發(fā)現(xiàn),產(chǎn)品的月銷量 萬件與投入實(shí)體店體驗(yàn)安裝的費(fèi)用 萬元之間滿足 函數(shù)關(guān)系式.已知網(wǎng)店每月固定的各種費(fèi)用支出為 萬元,產(chǎn)品每 萬件進(jìn)貨價(jià)格為 萬元,若每件產(chǎn)品的售價(jià)定為“進(jìn)貨價(jià)的 ”與“平均每件產(chǎn)品的實(shí)體店體驗(yàn)安裝費(fèi)用的一半”之和,則該公司最大月利潤是萬元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,且 .
(Ⅰ)設(shè) ,求 的單調(diào)區(qū)間及極值;
(Ⅱ)證明:函數(shù) 的圖象在函數(shù) 的圖象的上方.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 在 處的切線斜率為2.
(Ⅰ)求 的單調(diào)區(qū)間和極值;
(Ⅱ)若 在 上無解,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》卷5《商功》記載一個(gè)問題“今有圓堡瑽,周四丈八尺,高一丈一尺 .問積幾何?答曰:二千一百一十二尺.術(shù)曰:周自相乘,以高乘之,十二而一”.這里所說的圓堡瑽就是圓柱體,它的體積為“周自相乘,以高乘之,十二而一”. 就是說:圓堡瑽(圓柱體)的體積為 (底面圓的周長(zhǎng)的平方 高),則由此可推得圓周率 的取值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的左、右焦點(diǎn)分別為 短軸兩個(gè)端點(diǎn)為 且四邊形 是邊長(zhǎng)為 的正方形.
(Ⅰ)求橢圓的方程;
(Ⅱ)若 分別是橢圓長(zhǎng)軸的左、右端點(diǎn),動(dòng)點(diǎn) 滿足 ,連接 ,交橢圓于點(diǎn) .證明: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線 的參數(shù)方程為 ( 為參數(shù)),直線 的參數(shù)方程為 ( 為參數(shù)).
(Ⅰ)求曲線 和直線 的普通方程;
(Ⅱ)若點(diǎn) 為曲線 上一點(diǎn),求點(diǎn) 到直線 的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的程序框圖表示求算式“2×3×5×9×17×33”之值,則判斷框內(nèi)不能填入( 。
A.k≤33
B.k≤38
C.k≤50
D.k≤65
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com