【題目】已知橢圓 的左、右焦點分別為 短軸兩個端點為 且四邊形 是邊長為 的正方形.
(Ⅰ)求橢圓的方程;
(Ⅱ)若 分別是橢圓長軸的左、右端點,動點 滿足 ,連接 ,交橢圓于點 .證明: 為定值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題正確的是( )
A.存在 ,使得 的否定是:不存在 ,使得
B.對任意 ,均有 的否定是:存在 ,使得
C.若 ,則 或 的否命題是:若 ,則 或
D.若 為假命題,則命題 與 必一真一假
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱臺 中, , 分別是 , 的中點, , 平面 ,且 .
(1)證明: 平面 ;
(2)若 , 為等邊三角形,求四棱錐 的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在 上的函數(shù) 滿足 ,且 是偶函數(shù),當(dāng) 時, .令 ,若在區(qū)間 內(nèi),函數(shù) 有4個不相等實根,則實數(shù) 的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)國家環(huán)保部新修訂的《環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)》規(guī)定:居民區(qū) 的年平均濃度不得超過3S微克/立方米, 的24小時平均濃度不得超過75微克/立方米.某市環(huán)保局隨機抽取了一居民區(qū)2016年20天 的24小時平均濃度(單位:微克/立方米)的監(jiān)測數(shù)據(jù),數(shù)據(jù)統(tǒng)計如圖表:
組別 | 濃度(微克/立方米) | 頻數(shù)(天) | 頻率 |
第一組 | 3 | 0.15 | |
第二組 | 12 | 0.6 | |
第三組 | 3 | 0.15 | |
第四組 | 2 | 0.1 |
(Ⅰ)將這20天的測量結(jié)果按表中分組方法繪制成的樣本頻率分布直方圖如圖.
(。┣髨D中 的值;
(ⅱ)在頻率分布直方圖中估算樣本平均數(shù),并根據(jù)樣本估計總體的思想,從 的年平均濃度考慮,判斷該居民區(qū)的環(huán)境質(zhì)量是否需要改善?并說明理由.
(Ⅱ)將頻率視為概率,對于2016年的某3天,記這3天中該居民區(qū) 的24小時平均濃度符合環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)的天數(shù)為 ,求 的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 的最小正周期為 ,將函數(shù) 的圖象向左平移 個單位長度,再向下平移 個單位長度,得到函數(shù) 的圖象.
(Ⅰ)求函數(shù) 的單調(diào)遞增區(qū)間;
(Ⅱ)在銳角 中,角 的對邊分別為 .若 , ,求 面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形 中,點 在線段 上, , ,沿直線 將 翻折成 ,使點 在平面 上的射影 落在直線 上.
(Ⅰ)求證:直線 平面 ;
(Ⅱ)求二面角 的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)是定義域為R的周期函數(shù),最小正周期為2,且f(1+x)=f(1-x),當(dāng)-1≤x≤0時,f(x)=-x.
(1)判斷f(x)的奇偶性;
(2)試求出函數(shù)f(x)在區(qū)間[-1,2]上的表達(dá)式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com