【題目】已知是公差不為零的等差數(shù)列,滿足,且、成等比數(shù)列.

(1)求數(shù)列的通項公式;

(2)設數(shù)列滿足,求數(shù)列的前項和.

【答案】(1);(2)

【解析】試題分析:1)設等差數(shù)列 的公差為,由a3=7,且、、成等比數(shù)列.可得,解之得即可得出數(shù)列的通項公式;

2)由(1)得,則,由裂項相消法可求數(shù)列的前項和.

試題解析:(1)設數(shù)列的公差為,且由題意得,

,解得,

所以數(shù)列的通項公式.

(2)由(1)得

,

.

型】解答
束】
18

【題目】四棱錐的底面為直角梯形,,,為正三角形.

(1)點為棱上一點,若平面,求實數(shù)的值;

(2)求點B到平面SAD的距離.

【答案】(1);(2)

【解析】試題分析:(1)由平面,可證,進而證得四邊形為平行四邊形,根據(jù),可得;

(2)利用等體積法可求點到平面的距離.

試題解析:((1)因為平面SDM,

平面ABCD,

平面SDM 平面ABCD=DM,

所以,

因為,所以四邊形BCDM為平行四邊形,又,所以M為AB的中點.

因為,

.

(2)因為 , ,

所以平面

又因為平面,

所以平面平面,

平面平面,

在平面內過點直線于點,則平面,

中,

因為,所以,

又由題知,

所以,

由已知求得,所以,

連接BD,則,

又求得的面積為

所以由點B 到平面的距離為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在上的函數(shù)存在零點,且對任意都滿足,若關于的方程)恰有三個不同的根,則實數(shù)的取值范圍是____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,在△中, , 分別為, 的中點, 的中點, 將△沿折起到△的位置,使得平面平面, 的中點如圖2

1求證: 平面;

2求證:平面平面;

3線段上是否存在點,使得平面?說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有下列命題:①若,則;②若,則存在唯一實數(shù),使得;③若,則;④若,且的夾角為鈍角,則;⑤若平面內定點滿足,則為正三角形.其中正確的命題序號為 ________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列函數(shù)中,既是偶函數(shù),又在區(qū)間(0,+∞)上單調遞減的函數(shù)是( )

A.y=x2B.C.y=2|x|D.y=cosx

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的左、右焦點分別為, ,且離心率為, 為橢圓上任意一點,當時, 的面積為1.

(1)求橢圓的方程;

(2)已知點是橢圓上異于橢圓頂點的一點,延長直線, 分別與橢圓交于點, ,設直線的斜率為,直線的斜率為,求證: 為定值.

【答案】(1);(2)

【解析】試題分析:(1)設由題,由此求出,可得橢圓的方程;

(2)設, ,

當直線的斜率不存在時,可得

當直線的斜率不存在時,同理可得.

當直線、的斜率存在時,

設直線的方程為,則由消去通過運算可得

,同理可得,由此得到直線的斜率為,

直線的斜率為,進而可得.

試題解析:(1)設由題

解得,則,

橢圓的方程為.

(2)設,

當直線的斜率不存在時,設,則,

直線的方程為代入,可得

, ,則,

直線的斜率為,直線的斜率為

,

當直線的斜率不存在時,同理可得.

當直線、的斜率存在時,,

設直線的方程為,則由消去可得:

,則,代入上述方程可得

,

,則

,

設直線的方程為,同理可得,

直線的斜率為

直線的斜率為,

.

所以,直線的斜率之積為定值,即.

型】解答
束】
21

【題目】已知函數(shù) ,在處的切線方程為.

(1)求 ;

(2)若方程有兩個實數(shù)根 ,且,證明: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖在直三棱柱ABC A1B1C1中,已知AC⊥BC,BC=CC1,設AB1的中點為D,B1C∩BC1=E.

(1)求證:DE∥平面AA1C1C;

(2) 求證:BC1⊥AB1;

(3)設AC=BC=CC1 =1,求銳二面角A- B1C- A1的余弦值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù))在同一半周期內的圖象過點 ,其中為坐標原點, 為函數(shù)圖象的最高點, 為函數(shù)的圖象與軸的正半軸的交點, 為等腰直角三角形.

(1)求的值;

(2)將繞原點按逆時針方向旋轉角,得到,若點恰好落在曲線)上(如圖所示),試判斷點是否也落在曲線)上,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)(,且),且.

(1)求實數(shù)的值;

(2)判斷函數(shù)的奇偶性并證明

(3)若函數(shù)有零點,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案