(本小題滿分14分)在數(shù)列中,是數(shù)列前項和,,當(dāng)
(I)求證:數(shù)列是等差數(shù)列;
(II)設(shè)求數(shù)列的前項和;
(III)是否存在自然數(shù),使得對任意自然數(shù),都有成立?若存在,求出的最大值;若不存在,請說明理由.
(I)見解析(II)(III)存在,的最大值為,理由見解析
解析試題分析:(I)由已知得,當(dāng)時,,
所以,又因為,
所以數(shù)列是以1為首項,2為公差的等差數(shù)列. ……4分
(II )由(I)知,,
所以.
所以, ……6分
所以
. ……8分
(III)令,顯然在上是增函數(shù),
所以當(dāng)時,取得最小值,
依題意可知,要使得對任意,都有,
只要,即,所以,
因為所以的最大值為. ……14分
考點:本小題主要考查等差數(shù)列的證明,裂項法求和、數(shù)列與不等式的綜合應(yīng)用問題,考查學(xué)生綜合分析問題、解決問題的能力和邏輯思維能力和運算求解能力.
點評:解決此類問題要抓住一個中心——函數(shù),兩個密切聯(lián)系:一是數(shù)列和函數(shù)之間的密切聯(lián)系,數(shù)列的通項公式是數(shù)列問題的核心,函數(shù)的解析式是研究函數(shù)問題的基礎(chǔ);二是方程、不等式與函數(shù)的聯(lián)系,利用它們之間的對應(yīng)關(guān)系進行靈活處理.
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)設(shè)數(shù)列的前項和為.已知,,.
(Ⅰ)設(shè),求數(shù)列的通項公式;
(Ⅱ)若,,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列的前n項和為,且滿足=2-,=1,2,3,….
(1)求數(shù)列的通項公式;
(2)若數(shù)列滿足=1,且=+,求數(shù)列的通項公式;
(3)設(shè),求數(shù)列的前項和為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在數(shù)列{}中,,并且對任意都有成立,令.
(Ⅰ)求數(shù)列{}的通項公式;
(Ⅱ)設(shè)數(shù)列{}的前n項和為,證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
在數(shù)列中,,,.
(1)證明數(shù)列是等比數(shù)列;
(2)求數(shù)列的前項和;
(3)證明不等式,對任意皆成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
在R上定義運算,若不等式成立,則實數(shù)a的取值范圍是( ).
A.{a|} | B.{a|} |
C.{a|} | D.{a|} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com