如圖,長方體中,,,點的中點。

(1)求證:直線∥平面;
(2)求證:平面平面
(1)詳見解析;(2)詳見解析.

試題分析:(1)設(shè)AC與BD的交點為O,連接OP,則長方體中O為BD中點,又P為DD1的中點,所以三角形BDD1中,由中位線定理可知PO ∥ ,根據(jù)線面平行的判定定理即可,得證;(2)根據(jù)四邊形ABCD為菱形,故BDAC,由題意可知DD1AC,故AC 平面,進而可證明出結(jié)論.
解:(1)設(shè)AC與BD的交點為O,連接OP,則長方體中O為BD中點,又P為DD1的中點,
所以三角形BDD1中,PO ∥ ,而  不在平面PAC內(nèi),OP在平面PAC內(nèi),故∥平面 
(2)長方體中,AB=AD,所以ABCD為菱形,故BDAC,
又長方體中,DD1面ABCD,所以DD1AC,從而AC 平面,則平面平面
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,AB是底面半徑為1的圓柱的一條母線,O為下底面中心,BC是下底面的一條切線。

(1)求證:OB⊥AC;
(2)若AC與圓柱下底面所成的角為30°,OA=2。求三棱錐A-BOC的體積。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱錐中,⊥底面,底面為菱形,點為側(cè)棱上一點.
(1)若,求證:平面; 
(2)若,求證:平面⊥平面.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在三棱錐中,底面,的中點, 的中點,,.

(1)求證:平面;
(2)求與平面成角的正弦值;
(3)設(shè)點在線段上,且,平面,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱錐中, ,,側(cè)面為等邊三角形..

(1)證明:
(2)求AB與平面SBC所成角的正弦值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐P—ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q為AD的中點,M是棱PC上的點,PA=PD=2,BC=AD=1,CD=.

(1)若點M是棱PC的中點,求證:PA∥平面BMQ;
(2)若二面角M—BQ—C為30°,設(shè)PM=tMC,試確定t的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,四邊形ABCD是矩形,側(cè)面PAD⊥底面ABCD,若點E,F(xiàn)分別是PC,BD的中點。

(1)求證:EF∥平面PAD;
(2)求證:平面PAD⊥平面PCD

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

[2014·南通調(diào)研]設(shè)α,β是空間內(nèi)兩個不同的平面,m,n是平面α及β外的兩條不同直線.從“①m⊥n;②α⊥β;③n⊥β;④m⊥α”中選取三個作為條件,余下一個作為結(jié)論,寫出你認為正確的一個命題:________(用序號表示).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

平面α∥平面β的一個充分條件是(  )
A.存在一條直線a,a∥α,a∥β
B.存在一條直線a,a?α,a∥β
C.存在兩條平行直線a,b,a?α,b?β,a∥β,b∥α
D.存在兩條異面直線a,b,a?α,b?β,a∥β,b∥α

查看答案和解析>>

同步練習冊答案